Difference between revisions of "1950 AHSME Problems/Problem 20"

(Solution)
(13 intermediate revisions by 8 users not shown)
Line 1: Line 1:
 
== Problem==
 
== Problem==
  
When <math>x^{13}-1</math> is divided by <math>x-1</math>, the remainder is:
+
When <math>x^{13}+1</math> is divided by <math>x-1</math>, the remainder is:
  
 
<math> \textbf{(A)}\ 1\qquad\textbf{(B)}\ -1\qquad\textbf{(C)}\ 0\qquad\textbf{(D)}\ 2\qquad\textbf{(E)}\ \text{None of these answers} </math>
 
<math> \textbf{(A)}\ 1\qquad\textbf{(B)}\ -1\qquad\textbf{(C)}\ 0\qquad\textbf{(D)}\ 2\qquad\textbf{(E)}\ \text{None of these answers} </math>
  
==Solution 1==
+
==Solution==
 +
===Solution 1===
  
Use synthetic division. Notice that no matter what the degree of <math>x</math> of the dividend is, the remainder is always <math>\boxed{\mathrm{(C)}\ 0.}</math>
+
Use synthetic division, and get that the remainder is <math>\boxed{\mathrm{(D)}\ 2.}</math>
  
==Solution 2==
+
===Solution 2===
  
Notice that <math>1</math> is a zero of <math>x^13 - 1</math>. By the factor theorem, since <math>1</math> is a zero, then <math>x-1</math> is a factor of <math>x^13 - 1</math>, and when something is divided by a factor, the remainder is <math>\textbf{(C)}0</math>
+
By the remainder theorem, the remainder is equal to the expression <math>x^{13}+1</math> when <math>x=1.</math> This gives the answer of <math> \boxed{(\mathrm{D})\ 2.} </math>
 +
 
 +
===Solution 3===
 +
 
 +
Note that <math>x^{13} - 1 = (x - 1)(x^{12} + x^{11} \cdots + 1)</math>, so <math>x^{13} - 1</math> is divisible by <math>x-1</math>, meaning <math>(x^{13} - 1) + 2</math> leaves a remainder of <math>\boxed{\mathrm{(D)}\ 2.}</math>
  
 
==See Also==
 
==See Also==
  
{{AHSME box|year=1950|num-b=19|num-a=21}}
+
{{AHSME 50p box|year=1950|num-b=19|num-a=21}}
 +
 
 +
[[Category:Introductory Algebra Problems]]
 +
{{MAA Notice}}

Revision as of 21:55, 13 May 2016

Problem

When $x^{13}+1$ is divided by $x-1$, the remainder is:

$\textbf{(A)}\ 1\qquad\textbf{(B)}\ -1\qquad\textbf{(C)}\ 0\qquad\textbf{(D)}\ 2\qquad\textbf{(E)}\ \text{None of these answers}$

Solution

Solution 1

Use synthetic division, and get that the remainder is $\boxed{\mathrm{(D)}\ 2.}$

Solution 2

By the remainder theorem, the remainder is equal to the expression $x^{13}+1$ when $x=1.$ This gives the answer of $\boxed{(\mathrm{D})\ 2.}$

Solution 3

Note that $x^{13} - 1 = (x - 1)(x^{12} + x^{11} \cdots + 1)$, so $x^{13} - 1$ is divisible by $x-1$, meaning $(x^{13} - 1) + 2$ leaves a remainder of $\boxed{\mathrm{(D)}\ 2.}$

See Also

1950 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png