Difference between revisions of "1950 AHSME Problems/Problem 32"

(edited some unnecessary words and improved latex)
(Solution)
Line 10: Line 10:
 
==Solution==
 
==Solution==
  
By the Pythagorean triple <math>(7,24,25)</math>, the point where the ladder meets the wall is <math>24</math> feet above the ground. When the ladder slides, it becomes <math>20</math> feet above the ground. By the <math>(15,20,25)</math> Pythagorean triple, The foot of the ladder is now <math>15</math> feet from the building. Thus, it slides <math>15-7=\textbf{(D)}8 \text{ ft}</math>.
+
By the Pythagorean triple <math>(7,24,25)</math>, the point where the ladder meets the wall is <math>24</math> feet above the ground. When the ladder slides, it becomes <math>20</math> feet above the ground. By the <math>(15,20,25)</math> Pythagorean triple, The foot of the ladder is now <math>15</math> feet from the building. Thus, it slides <math>15-7=\textbf{(D)} 8 \text{ ft}</math>.
  
 
==See Also==
 
==See Also==

Revision as of 20:22, 10 April 2013

Problem

A $25$ foot ladder is placed against a vertical wall of a building. The foot of the ladder is $7$ feet from the base of the building. If the top of the ladder slips $4$ feet, then the foot of the ladder will slide:

$\textbf{(A)}\ 9\text{ ft} \qquad \textbf{(B)}\ 15\text{ ft} \qquad \textbf{(C)}\ 5\text{ ft} \qquad \textbf{(D)}\ 8\text{ ft} \qquad \textbf{(E)}\ 4\text{ ft}$

Solution

By the Pythagorean triple $(7,24,25)$, the point where the ladder meets the wall is $24$ feet above the ground. When the ladder slides, it becomes $20$ feet above the ground. By the $(15,20,25)$ Pythagorean triple, The foot of the ladder is now $15$ feet from the building. Thus, it slides $15-7=\textbf{(D)} 8 \text{ ft}$.

See Also

1950 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 31
Followed by
Problem 33
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions