# 1951 AHSME Problems/Problem 18

## Problem

The expression $21x^2 +ax +21$ is to be factored into two linear prime binomial factors with integer coefficients. This can be done if $a$ is:

$\textbf{(A)}\ \text{any odd number} \qquad\textbf{(B)}\ \text{some odd number} \qquad\textbf{(C)}\ \text{any even number}$ $\textbf{(D)}\ \text{some even number} \qquad\textbf{(E)}\ \text{zero}$

## Solution

We can factor $21x^2 + ax + 21$ as $(7x+3)(3x+7)$, which expands to $21x^2+42x+21$. So the answer is $\textbf{(D)}\ \text{some even number}$

## Solution 2

Factoring $21x^2+ax+21$ by grouping, we need to find some $b,c$ such that $b\cdot c = 21^2$, and that $b+c=a$. Since $21^2\equiv 1 (mod\!2)$, $b\land c \equiv 1 (mod 2)$, and $b+c \equiv 0 (mod\!2)$. So $a$ must be even. $a$ cannot be any even, since $21^2$ only has 4 odd factors, so the answer is $\textbf{(D)}\ \text{some even number}$

## See Also

 1951 AHSC (Problems • Answer Key • Resources) Preceded byProblem 17 Followed byProblem 19 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 • 41 • 42 • 43 • 44 • 45 • 46 • 47 • 48 • 49 • 50 All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.

Invalid username
Login to AoPS