Difference between revisions of "1951 AHSME Problems/Problem 47"

m (Solution)
Line 10: Line 10:
 
<cmath>\frac{-b\pm\sqrt{b^2-4ac}}{2a}</cmath>
 
<cmath>\frac{-b\pm\sqrt{b^2-4ac}}{2a}</cmath>
  
It's not hard to check that <math>r+s=-\frac{b}{a}</math> and <math>rs=\frac{c}{a}</math>. Now let's algebraically manipulate what we want to find:
+
By Vieta's Formula, <math>r+s=-\frac{b}{a}</math> and <math>rs=\frac{c}{a}</math>. Now let's algebraically manipulate what we want to find:
  
 
<cmath>\frac{1}{r^2}+\frac{1}{s^2}=\frac{r^2+s^2}{r^2s^2}=\frac{(r+s)^2-2rs}{(rs)^2}</cmath>
 
<cmath>\frac{1}{r^2}+\frac{1}{s^2}=\frac{r^2+s^2}{r^2s^2}=\frac{(r+s)^2-2rs}{(rs)^2}</cmath>

Revision as of 17:01, 6 August 2016

Problem

If $r$ and $s$ are the roots of the equation $ax^2+bx+c=0$, the value of $\frac{1}{r^{2}}+\frac{1}{s^{2}}$ is:

$\textbf{(A)}\ b^{2}-4ac\qquad\textbf{(B)}\ \frac{b^{2}-4ac}{2a}\qquad\textbf{(C)}\ \frac{b^{2}-4ac}{c^{2}}\qquad\textbf{(D)}\ \frac{b^{2}-2ac}{c^{2}}$ $\textbf{(E)}\ \text{none of these}$

Solution

$r$ and $s$ can be found in terms of $a$, $b$, and $c$ by using the quadratic formula; the roots are

\[\frac{-b\pm\sqrt{b^2-4ac}}{2a}\]

By Vieta's Formula, $r+s=-\frac{b}{a}$ and $rs=\frac{c}{a}$. Now let's algebraically manipulate what we want to find:

\[\frac{1}{r^2}+\frac{1}{s^2}=\frac{r^2+s^2}{r^2s^2}=\frac{(r+s)^2-2rs}{(rs)^2}\]

Plugging in the values for $r+s$ and $rs$ gives

\[\frac{1}{r^2}+\frac{1}{s^2}=\frac{(-b/a)^2-2(c/a)}{(c/a)^2}=\boxed{\frac{b^2-2ca}{c^2}\textbf{(D)}}\]

See Also

1951 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 46
Followed by
Problem 48
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png