Difference between revisions of "1951 AHSME Problems/Problem 50"

(Solved the problem)
 
(OK, I'm taking a break now.)
Line 1: Line 1:
 
 
== Problem ==
 
== Problem ==
 
Tom, Dick and Harry started out on a <math>100</math>-mile journey. Tom and Harry went by automobile at the rate of <math>25</math> mph, while Dick walked at the rate of <math>5</math> mph. After a certain distance, Harry got off and walked on at <math>5</math> mph, while Tom went back for Dick and got him to the destination at the same time that Harry arrived. The number of hours required for the trip was:  
 
Tom, Dick and Harry started out on a <math>100</math>-mile journey. Tom and Harry went by automobile at the rate of <math>25</math> mph, while Dick walked at the rate of <math>5</math> mph. After a certain distance, Harry got off and walked on at <math>5</math> mph, while Tom went back for Dick and got him to the destination at the same time that Harry arrived. The number of hours required for the trip was:  
Line 28: Line 27:
 
The journey took 8 hours, so the correct answer is <math>\boxed{\textbf{(D)}}</math>.
 
The journey took 8 hours, so the correct answer is <math>\boxed{\textbf{(D)}}</math>.
  
== See also ==
+
== See Also ==
{{AHSME box|year=1951|num-b=49|after=Last Question}}
+
{{AHSME 50p box|year=1951|num-b=49|after=Last Question}}
 +
 
 +
[[Category:Intermediate Algebra Problems]]

Revision as of 09:00, 29 April 2012

Problem

Tom, Dick and Harry started out on a $100$-mile journey. Tom and Harry went by automobile at the rate of $25$ mph, while Dick walked at the rate of $5$ mph. After a certain distance, Harry got off and walked on at $5$ mph, while Tom went back for Dick and got him to the destination at the same time that Harry arrived. The number of hours required for the trip was:

$\textbf{(A)}\ 5\qquad\textbf{(B)}\ 6\qquad\textbf{(C)}\ 7\qquad\textbf{(D)}\ 8\qquad\textbf{(E)}\ \text{none of these answers}$

Solution

Let $d_1$ be the distance (in miles) that Harry traveled on car, and let $d_2$ be the distance (in miles) that Tom backtracked to get Dick. Let $T$ be the time (in hours) that it took the three to complete the journey. We now examine Harry's journey, Tom's journey, and Dick's journey. These yield, respectively, the equations

\[\frac{d_1}{25}+\frac{100-d_1}{5}=T,\]

\[\frac{d_1}{25}+\frac{d_2}{25}+\frac{100-(d_1-d_2)}{25}=T,\]

\[\frac{d_1-d_2}{5}+\frac{100-(d_1-d_2)}{25}=T.\]

We combine these three equations:

\[\frac{d_1}{25}+\frac{100-d_1}{5}=\frac{d_1}{25}+\frac{d_2}{25}+\frac{100-(d_1-d_2)}{25}=\frac{d_1-d_2}{5}+\frac{100-(d_1-d_2)}{25}\]

After multiplying everything by 25 and simplifying, we get

\[500-4d_1=100+2d_2=100+4d_1-4d_2\]

We have that $100+2d_2=100+4d_1-4d_2$, so $4d_1=6d_2\Rightarrow d_1=\frac{2}{3}d_2$. This then shows that $500-4d_1=100+\frac{4}{3}d_1\Rightarrow 400=\frac{16}{3}d_1\Rightarrow d_1=75$, which in turn gives that $d_2=50$. Now we only need to solve for $T$:

\[T=\frac{d_1}{25}+\frac{100-d_1}{5}=\frac{75}{25}+\frac{100-75}{5}=3+5=8\]

The journey took 8 hours, so the correct answer is $\boxed{\textbf{(D)}}$.

See Also

1951 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 49
Followed by
Last Question
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions
Invalid username
Login to AoPS