Difference between revisions of "1952 AHSME Problems/Problem 23"

(Blanked page)
m (Solution)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
 +
== Problem==
  
 +
If <math> \frac{x^2-bx}{ax-c}=\frac{m-1}{m+1} </math> has roots which are numerically equal but of opposite signs, the value of <math> m </math> must be:
 +
 +
<math> \textbf{(A) \ }\frac{a-b}{a+b} \qquad \textbf{(B) \ }\frac{a+b}{a-b} \qquad \textbf{(C) \ }c \qquad \textbf{(D) \ }\frac{1}{c} \qquad \textbf{(E) \ }1 </math>
 +
 +
==Solution==
 +
 +
Cross-multiplying, we find that <math> (m+1)x^2-(bm+am+b-a)x+c(m-1)=0 </math>. Because the roots of this quadratic are additive inverses, their sum is <math> 0 </math>. According to [[Vieta's Formulas]], <math> \frac{bm+am+b-a}{m+1}=0 </math>, or <math> m(a+b)=a-b </math>. Hence, <math> m=\boxed{\textbf{(A)}\ \frac{a-b}{a+b}} </math>.
 +
 +
==See also==
 +
{{AHSME 50p box|year=1952|num-b=22|num-a=24}}
 +
{{MAA Notice}}

Latest revision as of 23:59, 28 January 2014

Problem

If $\frac{x^2-bx}{ax-c}=\frac{m-1}{m+1}$ has roots which are numerically equal but of opposite signs, the value of $m$ must be:

$\textbf{(A) \ }\frac{a-b}{a+b} \qquad \textbf{(B) \ }\frac{a+b}{a-b} \qquad \textbf{(C) \ }c \qquad \textbf{(D) \ }\frac{1}{c} \qquad \textbf{(E) \ }1$

Solution

Cross-multiplying, we find that $(m+1)x^2-(bm+am+b-a)x+c(m-1)=0$. Because the roots of this quadratic are additive inverses, their sum is $0$. According to Vieta's Formulas, $\frac{bm+am+b-a}{m+1}=0$, or $m(a+b)=a-b$. Hence, $m=\boxed{\textbf{(A)}\ \frac{a-b}{a+b}}$.

See also

1952 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png