Difference between revisions of "1952 AHSME Problems/Problem 28"

(Created page with "== Problem == In the table shown, the formula relating x and y is: <cmath> \begin{tabular}{|c|c|c|c|c|c|}\hline x & 1 & 2 & 3 & 4 & 5\\ \hline y & 3 & 7 & 13 & 21 & 31\\ \hline...")
 
m (Problem)
Line 2: Line 2:
 
In the table shown, the formula relating x and y is:  
 
In the table shown, the formula relating x and y is:  
  
<cmath> \begin{tabular}{|c|c|c|c|c|c|}\hline x & 1 & 2 & 3 & 4 & 5\\ \hline y & 3 & 7 & 13 & 21 & 31\\ \hline\end{tabular} </cmath>
+
<cmath> \begin{array}{|c|c|c|c|c|c|}\hline x & 1 & 2 & 3 & 4 & 5\\ \hline y & 3 & 7 & 13 & 21 & 31\\ \hline\end{array} </cmath>
  
 
<math>\text{(A) } y = 4x - 1 \qquad\quad
 
<math>\text{(A) } y = 4x - 1 \qquad\quad

Revision as of 20:11, 10 March 2015

Problem

In the table shown, the formula relating x and y is:

\[\begin{array}{|c|c|c|c|c|c|}\hline x & 1 & 2 & 3 & 4 & 5\\ \hline y & 3 & 7 & 13 & 21 & 31\\ \hline\end{array}\]

$\text{(A) } y = 4x - 1 \qquad\quad \text{(B) } y = x^3 - x^2 + x + 2 \qquad\\ \text{(C) } y = x^2 + x + 1 \qquad \text{(D) } y = (x^2 + x + 1)(x - 1) \qquad\\ \text{(E) } \text{none of these}$

Solution

$\fbox{}$

See also

1952 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 27
Followed by
Problem 29
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS