Difference between revisions of "1955 AHSME Problems/Problem 27"

(Created page with "If <math>r</math> and <math>s</math> are the roots of <math>x\^{}2 - px + q = 0</math>, then <math>x\^{}2 + s\^{}2</math> equals: <math>(A) p\^{}2 + 2q</math> <math>(B) p\^{...")
 
 
Line 1: Line 1:
If <math>r</math> and <math>s</math> are the roots of <math>x\^{}2 - px + q = 0</math>, then <math>x\^{}2 + s\^{}2</math> equals:
+
== Problem 27==
  
<math>(A) p\^{}2 + 2q</math> <math>(B) p\^{}2 - 2q</math> <math>(C) p\^{}2 + q\^{}2</math> <math>(D) p\^{}2 - q\^{}2</math> <math>(E) p\^{}2</math>
+
If <math>r</math> and <math>s</math> are the roots of <math>x^2-px+q=0</math>, then <math>r^2+s^2</math> equals:
 +
 
 +
<math> \textbf{(A)}\ p^2+2q\qquad\textbf{(B)}\ p^2-2q\qquad\textbf{(C)}\ p^2+q^2\qquad\textbf{(D)}\ p^2-q^2\qquad\textbf{(E)}\ p^2 </math>
 +
 
 +
 
 +
== Solution ==
 +
We can write <math>r^2+s^2</math> in terms of the sum of the roots <math>(r+s)</math> and the products of the roots <math>(rs):</math>
 +
<cmath>r^2 + s^2 = (r+s)^2 - 2rs = p^2 - 2q</cmath>
 +
The answer is <math>\boxed{\textbf{(B)}}.</math>
 +
== See Also ==
 +
{{AHSME 50p box|year=1955|num-b=26|num-a=28}}
 +
 
 +
{{MAA Notice}}

Latest revision as of 10:47, 15 February 2021

Problem 27

If $r$ and $s$ are the roots of $x^2-px+q=0$, then $r^2+s^2$ equals:

$\textbf{(A)}\ p^2+2q\qquad\textbf{(B)}\ p^2-2q\qquad\textbf{(C)}\ p^2+q^2\qquad\textbf{(D)}\ p^2-q^2\qquad\textbf{(E)}\ p^2$


Solution

We can write $r^2+s^2$ in terms of the sum of the roots $(r+s)$ and the products of the roots $(rs):$ \[r^2 + s^2 = (r+s)^2 - 2rs = p^2 - 2q\] The answer is $\boxed{\textbf{(B)}}.$

See Also

1955 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 26
Followed by
Problem 28
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions


The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png