https://artofproblemsolving.com/wiki/index.php?title=1957_AHSME_Problems/Problem_27&feed=atom&action=history 1957 AHSME Problems/Problem 27 - Revision history 2021-07-27T19:11:04Z Revision history for this page on the wiki MediaWiki 1.31.1 https://artofproblemsolving.com/wiki/index.php?title=1957_AHSME_Problems/Problem_27&diff=98208&oldid=prev The referee: Created page with "One approach is to plug in some roots. You have $x^{2}-5x+6=0$ The roots are $x=2$ and $x=3$. The sum of the roots is [itex]\frac{1}{2}+\f..." 2018-10-20T22:49:26Z <p>Created page with &quot;One approach is to plug in some roots. You have &lt;math&gt;x^{2}-5x+6=0&lt;/math&gt; The roots are &lt;math&gt;x=2&lt;/math&gt; and &lt;math&gt;x=3&lt;/math&gt;. The sum of the roots is &lt;math&gt;\frac{1}{2}+\f...&quot;</p> <p><b>New page</b></p><div>One approach is to plug in some roots.<br /> <br /> You have &lt;math&gt;x^{2}-5x+6=0&lt;/math&gt; <br /> <br /> The roots are &lt;math&gt;x=2&lt;/math&gt; and &lt;math&gt;x=3&lt;/math&gt;.<br /> <br /> The sum of the roots is &lt;math&gt;\frac{1}{2}+\frac{1}{3}=\frac{5}{6}&lt;/math&gt;.<br /> <br /> In this case, &lt;math&gt;p&lt;/math&gt; and &lt;math&gt;q&lt;/math&gt; are &lt;math&gt;-5&lt;/math&gt; and &lt;math&gt;6&lt;/math&gt;.<br /> <br /> From there, you can easily tell that the answer is &lt;math&gt;(A)&lt;/math&gt;</div> The referee