# 1957 AHSME Problems/Problem 6

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

## Problem

An open box is constructed by starting with a rectangular sheet of metal $10$ in. by $14$ in. and cutting a square of side $x$ inches from each corner. The resulting projections are folded up and the seams welded. The volume of the resulting box is: $\textbf{(A)}\ 140x - 48x^2 + 4x^3 \qquad \textbf{(B)}\ 140x + 48x^2 + 4x^3\qquad \\ \textbf{(C)}\ 140x+24x^2+x^3\qquad \textbf{(D)}\ 140x-24x^2+x^3\qquad \textbf{(E)}\ \text{none of these}$

## Solution

The resulting metal piece looks something like this where the white parts are squares of length $x$: $[asy] fill((0,4)--(4,4)--(4,0)--(6,0)--(6,4)--(10,4)--(10,10)--(6,10)--(6,14)--(4,14)--(4,10)--(0,10)--cycle,grey); draw((0,0)--(14-4,0)--(10,14)--(0,14)--cycle); draw((0,0)--(0,4)--(4,4)--(4,0)--cycle); draw((10-4,0)--(10,0)--(10,4)--(6,4)--cycle); draw((0,14)--(4,14)--(4,10)--(0,10)--cycle); draw((6,14)--(6,10)--(10,10)--(10,14)--cycle); [/asy]$

From here, try to visualize the rectangular prism coming together and realize the height is $x$, the length is $14-2x$, and the width is $10-2x$. Therefore, the volume is $x(14-2x)(10-2x)=x(4x^2-48x+40)= \boxed{\textbf{(A) } 140x - 48x^2 + 4x^3}$.

 1957 AHSME (Problems • Answer Key • Resources) Preceded byProblem 5 Followed byProblem 7 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. Invalid username
Login to AoPS