# 1958 AHSME Problems

## Problem 1

The value of $[2 - 3(2 - 3)^{-1}]^{-1}$ is:

$\textbf{(A)}\ 5\qquad \textbf{(B)}\ -5\qquad \textbf{(C)}\ \frac{1}{5}\qquad \textbf{(D)}\ -\frac{1}{5}\qquad \textbf{(E)}\ \frac{5}{3}$

## Problem 2

If $\frac {1}{x} - \frac {1}{y} = \frac {1}{z}$, then $z$ equals:

$\textbf{(A)}\ y - x\qquad \textbf{(B)}\ x - y\qquad \textbf{(C)}\ \frac {y - x}{xy}\qquad \textbf{(D)}\ \frac {xy}{y - x}\qquad \textbf{(E)}\ \frac {xy}{x - y}$

## Problem 3

Of the following expressions the one equal to $\frac{a^{-1}b^{-1}}{a^{-3} - b^{-3}}$ is:

$\textbf{(A)}\ \frac{a^2b^2}{b^2 - a^2}\qquad \textbf{(B)}\ \frac{a^2b^2}{b^3 - a^3}\qquad \textbf{(C)}\ \frac{ab}{b^3 - a^3}\qquad \textbf{(D)}\ \frac{a^3 - b^3}{ab}\qquad \textbf{(E)}\ \frac{a^2b^2}{a - b}$

## Problem 4

In the expression $\frac{x + 1}{x - 1}$ each $x$ is replaced by $\frac{x + 1}{x - 1}$. The resulting expression, evaluated for $x = \frac{1}{2}$, equals:

$\textbf{(A)}\ 3\qquad \textbf{(B)}\ -3\qquad \textbf{(C)}\ 1\qquad \textbf{(D)}\ -1\qquad \textbf{(E)}\ \text{none of these}$

## Problem 5

The expression $2 + \sqrt{2} + \frac{1}{2 + \sqrt{2}} + \frac{1}{\sqrt{2} - 2}$ equals:

$\textbf{(A)}\ 2\qquad \textbf{(B)}\ 2 - \sqrt{2}\qquad \textbf{(C)}\ 2 + \sqrt{2}\qquad \textbf{(D)}\ 2\sqrt{2}\qquad \textbf{(E)}\ \frac{\sqrt{2}}{2}$

## Problem 6

The arithmetic mean between $\frac {x + a}{x}$ and $\frac {x - a}{x}$, when $x \neq 0$, is:

$\textbf{(A)}\ {2}\text{, if }{a \neq 0}\qquad \textbf{(B)}\ 1\qquad \textbf{(C)}\ {1}\text{, only if }{a = 0}\qquad \textbf{(D)}\ \frac {a}{x}\qquad \textbf{(E)}\ x$

## Problem 7

A straight line joins the points $(-1,1)$ and $(3,9)$. Its $x$-intercept is:

$\textbf{(A)}\ -\frac{3}{2}\qquad \textbf{(B)}\ -\frac{2}{3}\qquad \textbf{(C)}\ \frac{2}{5}\qquad \textbf{(D)}\ 2\qquad \textbf{(E)}\ 3$

## Problem 8

Which of these four numbers $\sqrt{\pi^2},\,\sqrt[3]{.8},\,\sqrt[4]{.00016},\,\sqrt[3]{-1}\cdot \sqrt{(.09)^{-1}}$, is (are) rational:

$\textbf{(A)}\ \text{none}\qquad \textbf{(B)}\ \text{all}\qquad \textbf{(C)}\ \text{the first and fourth}\qquad \textbf{(D)}\ \text{only the fourth}\qquad \textbf{(E)}\ \text{only the first}$

## Problem 9

A value of $x$ satisfying the equation $x^2 \plus{} b^2 \equal{} (a \minus{} x)^2$ (Error compiling LaTeX. ! Undefined control sequence.) is:

$\textbf{(A)}\ \frac{b^2 \plus{} a^2}{2a}\qquad \textbf{(B)}\ \frac{b^2 \minus{} a^2}{2a}\qquad \textbf{(C)}\ \frac{a^2 \minus{} b^2}{2a}\qquad \textbf{(D)}\ \frac{a \minus{} b}{2}\qquad \textbf{(E)}\ \frac{a^2 \minus{} b^2}{2}$ (Error compiling LaTeX. ! Undefined control sequence.)

## Problem 10

For what real values of $k$, other than $k \equal{} 0$ (Error compiling LaTeX. ! Undefined control sequence.), does the equation $x^2 \plus{} kx \plus{} k^2 \equal{} 0$ (Error compiling LaTeX. ! Undefined control sequence.) have real roots?

$\textbf{(A)}\ {k < 0}\qquad \textbf{(B)}\ {k > 0} \qquad \textbf{(C)}\ {k \ge 1} \qquad \textbf{(D)}\ \text{all values of }{k}\qquad \textbf{(E)}\ \text{no values of }{k}$

## Problem 11

The number of roots satisfying the equation $\sqrt{5 \minus{} x} \equal{} x\sqrt{5 \minus{} x}$ (Error compiling LaTeX. ! Undefined control sequence.) is:

$\textbf{(A)}\ \text{unlimited}\qquad \textbf{(B)}\ 3\qquad \textbf{(C)}\ 2\qquad \textbf{(D)}\ 1\qquad \textbf{(E)}\ 0$

## Problem 12

If $P \equal{} \frac{s}{(1 \plus{} k)^n}$ (Error compiling LaTeX. ! Undefined control sequence.) then $n$ equals:

$\textbf{(A)}\ \frac{\log{\left(\frac{s}{P}\right)}}{\log{(1 \plus{} k)}}\qquad \textbf{(B)}\ \log{\left(\frac{s}{P(1 \plus{} k)}\right)}\qquad \textbf{(C)}\ \log{\left(\frac{s \minus{} P}{1 \plus{} k}\right)}\qquad \\ \textbf{(D)}\ \log{\left(\frac{s}{P}\right)} \plus{} \log{(1 \plus{} k)}\qquad \textbf{(E)}\ \frac{\log{(s)}}{\log{(P(1 \plus{} k))}}$ (Error compiling LaTeX. ! Undefined control sequence.)

## Problem 13

The sum of two numbers is $10$; their product is $20$. The sum of their reciprocals is:

$\textbf{(A)}\ \frac{1}{10}\qquad \textbf{(B)}\ \frac{1}{2}\qquad \textbf{(C)}\ 1\qquad \textbf{(D)}\ 2\qquad \textbf{(E)}\ 4$

## Problem 14

At a dance party a group of boys and girls exchange dances as follows: one boy dances with $5$ girls, a second boy dances with $6$ girls, and so on, the last boy dancing with all the girls. If $b$ represents the number of boys and $g$ the number of girls, then:

$\textbf{(A)}\ b \equal{} g\qquad \textbf{(B)}\ b \equal{} \frac{g}{5}\qquad \textbf{(C)}\ b \equal{} g \minus{} 4\qquad \textbf{(D)}\ b \equal{} g \minus{} 5\qquad \\ \textbf{(E)}\ \text{It is impossible to determine a relation between }{b}\text{ and }{g}\text{ without knowing }{b \plus{} g.}$ (Error compiling LaTeX. ! Undefined control sequence.)

## Problem 15

A quadrilateral is inscribed in a circle. If an angle is inscribed into each of the four segments outside the quadrilateral, the sum of these four angles, expressed in degrees, is:

$\textbf{(A)}\ 1080\qquad \textbf{(B)}\ 900\qquad \textbf{(C)}\ 720\qquad \textbf{(D)}\ 540\qquad \textbf{(E)}\ 360$

## Problem 16

The area of a circle inscribed in a regular hexagon is $100\pi$. The area of hexagon is:

$\textbf{(A)}\ 600\qquad \textbf{(B)}\ 300\qquad \textbf{(C)}\ 200\sqrt{2}\qquad \textbf{(D)}\ 200\sqrt{3}\qquad \textbf{(E)}\ 120\sqrt{5}$

## Problem 17

If $x$ is positive and $\log{x} \ge \log{2} \plus{} \frac{1}{2}\log{x}$ (Error compiling LaTeX. ! Undefined control sequence.), then:

$\textbf{(A)}\ {x}\text{ has no minimum or maximum value}\qquad \\ \textbf{(B)}\ \text{the maximum value of }{x}\text{ is }{1}\qquad \\ \textbf{(C)}\ \text{the minimum value of }{x}\text{ is }{1}\qquad \\ \textbf{(D)}\ \text{the maximum value of }{x}\text{ is }{4}\qquad \\ \textbf{(E)}\ \text{the minimum value of }{x}\text{ is }{4}$

## Problem 18

The area of a circle is doubled when its radius $r$ is increased by $n$. Then $r$ equals:

$\textbf{(A)}\ n(\sqrt{2} \plus{} 1)\qquad \textbf{(B)}\ n(\sqrt{2} \minus{} 1)\qquad \textbf{(C)}\ n\qquad \textbf{(D)}\ n(2 \minus{} \sqrt{2})\qquad \textbf{(E)}\ \frac{n\pi}{\sqrt{2} \plus{} 1}$ (Error compiling LaTeX. ! Undefined control sequence.)

## Problem 19

The sides of a right triangle are $a$ and $b$ and the hypotenuse is $c$. A perpendicular from the vertex divides $c$ into segments $r$ and $s$, adjacent respectively to $a$ and $b$. If $a : b \equal{} 1 : 3$ (Error compiling LaTeX. ! Undefined control sequence.), then the ratio of $r$ to $s$ is:

$\textbf{(A)}\ 1 : 3\qquad \textbf{(B)}\ 1 : 9\qquad \textbf{(C)}\ 1 : 10\qquad \textbf{(D)}\ 3 : 10\qquad \textbf{(E)}\ 1 : \sqrt{10}$

## Problem 20

If $4^x \minus{} 4^{x \minus{} 1} \equal{} 24$ (Error compiling LaTeX. ! Undefined control sequence.), then $(2x)^x$ equals:

$\textbf{(A)}\ 5\sqrt{5}\qquad \textbf{(B)}\ \sqrt{5}\qquad \textbf{(C)}\ 25\sqrt{5}\qquad \textbf{(D)}\ 125\qquad \textbf{(E)}\ 25$

## Problem 21

In the accompanying figure $\overline{CE}$ and $\overline{DE}$ are equal chords of a circle with center $O$. Arc $AB$ is a quarter-circle. Then the ratio of the area of triangle $CED$ to the area of triangle $AOB$ is:

$[asy] draw(circle((0,0),10),black+linewidth(.75)); draw((-10,0)--(0,0)--(10,0)--(0,10)--cycle,dot); MP("O",(0,0),N);MP("C",(-10,0),W);MP("D",(10,0),E);;MP("E",(0,10),N); draw((-sqrt(70),-sqrt(30))--(sqrt(30),-sqrt(70))--(0,0)--cycle,dot); MP("A",(-sqrt(70),-sqrt(30)),SW);MP("B",(sqrt(30),-sqrt(70)),SE); [/asy]$

$\textbf{(A)}\ \sqrt {2} : 1\qquad \textbf{(B)}\ \sqrt {3} : 1\qquad \textbf{(C)}\ 4 : 1\qquad \textbf{(D)}\ 3 : 1\qquad \textbf{(E)}\ 2 : 1$

## Problem 22

A particle is placed on the parabola $y \equal{} x^2 \minus{} x \minus{} 6$ (Error compiling LaTeX. ! Undefined control sequence.) at a point $P$ whose $y$-coordinate is $6$. It is allowed to roll along the parabola until it reaches the nearest point $Q$ whose $y$-coordinate is $\minus{}6$ (Error compiling LaTeX. ! Undefined control sequence.). The horizontal distance traveled by the particle (the numerical value of the difference in the $x$-coordinates of $P$ and $Q$) is:

$\textbf{(A)}\ 5\qquad \textbf{(B)}\ 4\qquad \textbf{(C)}\ 3\qquad \textbf{(D)}\ 2\qquad \textbf{(E)}\ 1$

## Problem 23

If, in the expression $x^2 \minus{} 3$ (Error compiling LaTeX. ! Undefined control sequence.), $x$ increases or decreases by a positive amount of $a$, the expression changes by an amount:

$\textbf{(A)}\ {\pm 2ax \plus{} a^2}\qquad \textbf{(B)}\ {2ax \pm a^2}\qquad \textbf{(C)}\ {\pm a^2 \minus{} 3} \qquad \textbf{(D)}\ {(x \plus{} a)^2 \minus{} 3}\qquad\\ \textbf{(E)}\ {(x \minus{} a)^2 \minus{} 3}$ (Error compiling LaTeX. ! Undefined control sequence.)

## Problem 24

A man travels $m$ feet due north at $2$ minutes per mile. He returns due south to his starting point at $2$ miles per minute. The average rate in miles per hour for the entire trip is:

$\textbf{(A)}\ 75\qquad \textbf{(B)}\ 48\qquad \textbf{(C)}\ 45\qquad \textbf{(D)}\ 24\qquad\\ \textbf{(E)}\ \text{impossible to determine without knowing the value of }{m}$

## Problem 25

If $\log_{k}{x}\cdot \log_{5}{k} \equal{} 3$ (Error compiling LaTeX. ! Undefined control sequence.), then $x$ equals:

$\textbf{(A)}\ k^6\qquad \textbf{(B)}\ 5k^3\qquad \textbf{(C)}\ k^3\qquad \textbf{(D)}\ 243\qquad \textbf{(E)}\ 125$

## Problem 26

A set of $n$ numbers has the sum $s$. Each number of the set is increased by $20$, then multiplied by $5$, and then decreased by $20$. The sum of the numbers in the new set thus obtained is:

$\textbf{(A)}\ s \plus{} 20n\qquad \textbf{(B)}\ 5s \plus{} 80n\qquad \textbf{(C)}\ s\qquad \textbf{(D)}\ 5s\qquad \textbf{(E)}\ 5s \plus{} 4n$ (Error compiling LaTeX. ! Undefined control sequence.)

## Problem 27

The points $(2,\minus{}3)$ (Error compiling LaTeX. ! Undefined control sequence.), $(4,3)$, and $(5, k/2)$ are on the same straight line. The value(s) of $k$ is (are):

$\textbf{(A)}\ 12\qquad \textbf{(B)}\ \minus{}12\qquad \textbf{(C)}\ \pm 12\qquad \textbf{(D)}\ {12}\text{ or }{6}\qquad \textbf{(E)}\ {6}\text{ or }{6\frac{2}{3}}$ (Error compiling LaTeX. ! Undefined control sequence.)

## Problem 28

A $16$-quart radiator is filled with water. Four quarts are removed and replaced with pure antifreeze liquid. Then four quarts of the mixture are removed and replaced with pure antifreeze. This is done a third and a fourth time. The fractional part of the final mixture that is water is:

$\textbf{(A)}\ \frac{1}{4}\qquad \textbf{(B)}\ \frac{81}{256}\qquad \textbf{(C)}\ \frac{27}{64}\qquad \textbf{(D)}\ \frac{37}{64}\qquad \textbf{(E)}\ \frac{175}{256}$

## Problem 29

In a general triangle $ADE$ (as shown) lines $\overline{EB}$ and $\overline{EC}$ are drawn. Which of the following angle relations is true?

$[asy] draw((-8,0)--(-2,0)--(4,0)--(10,0)--(0,10)--cycle,dot); draw((-2,0)--(0,10),dot);draw((4,0)--(0,10),dot); MP("A",(-8,0),S);MP("B",(-2,0),S);MP("C",(4,0),S);MP("D",(10,0),S);MP("E",(0,10),N); MP("x",(-7.9,.4),E);MP("z",(-2,.4),W);MP("m",(-2,.4),E);MP("n",(4,.4),W);MP("c",(4,.4),E);MP("a",(9.9,.4),W); MP("y",(-.2,8.8),SW);MP("w",(.1,8.8),S);MP("b",(.7,9),SE); [/asy]$

$\textbf{(A)}\ x \plus{} z \equal{} a \plus{} b\qquad \textbf{(B)}\ y \plus{} z \equal{} a \plus{} b\qquad \textbf{(C)}\ m \plus{} x \equal{} w \plus{} n\qquad \\ \textbf{(D)}\ x \plus{} z \plus{} n \equal{} w \plus{} c \plus{} m\qquad \textbf{(E)}\ x \plus{} y \plus{} n \equal{} a \plus{} b \plus{} m$ (Error compiling LaTeX. ! Undefined control sequence.)

## Problem 30

If $xy \equal{} b$ (Error compiling LaTeX. ! Undefined control sequence.) and $\frac{1}{x^2} \plus{} \frac{1}{y^2} \equal{} a$ (Error compiling LaTeX. ! Undefined control sequence.), then $(x \plus{} y)^2$ (Error compiling LaTeX. ! Undefined control sequence.) equals:

$\textbf{(A)}\ (a \plus{} 2b)^2\qquad \textbf{(B)}\ a^2 \plus{} b^2\qquad \textbf{(C)}\ b(ab \plus{} 2)\qquad \textbf{(D)}\ ab(b \plus{} 2)\qquad \textbf{(E)}\ \frac{1}{a} \plus{} 2b$ (Error compiling LaTeX. ! Undefined control sequence.)

## Problem 31

The altitude drawn to the base of an isosceles triangle is $8$, and the perimeter $32$. The area of the triangle is:

$\textbf{(A)}\ 56\qquad \textbf{(B)}\ 48\qquad \textbf{(C)}\ 40\qquad \textbf{(D)}\ 32\qquad \textbf{(E)}\ 24$

With $$1000$ a rancher is to buy steers at$ $25$ each and cows at $$26$ each. If the number of steers $s$ and the number of cows $c$ are both positive integers, then: $\textbf{(A)}\ \text{this problem has no solution}\qquad\\ \textbf{(B)}\ \text{there are two solutions with }{s}\text{ exceeding }{c}\qquad \\ \textbf{(C)}\ \text{there are two solutions with }{c}\text{ exceeding }{s}\qquad \\ \textbf{(D)}\ \text{there is one solution with }{s}\text{ exceeding }{c}\qquad \\ \textbf{(E)}\ \text{there is one solution with }{c}\text{ exceeding }{s}$ ## Problem 33 For one root of$ax^2 \plus{} bx \plus{} c \equal{} 0$(Error compiling LaTeX. ! Undefined control sequence.) to be double the other, the coefficients $a,\,b,\,c$ must be related as follows:$\textbf{(A)}\ 4b^2 \equal{} 9c\qquad \textbf{(B)}\ 2b^2 \equal{} 9ac\qquad \textbf{(C)}\ 2b^2 \equal{} 9a\qquad \\ \textbf{(D)}\ b^2 \minus{} 8ac \equal{} 0\qquad \textbf{(E)}\ 9b^2 \equal{} 2ac$(Error compiling LaTeX. ! Undefined control sequence.) ## Problem 34 The numerator of a fraction is$6x \plus{} 1$(Error compiling LaTeX. ! Undefined control sequence.), then denominator is$7 \minus{} 4x$(Error compiling LaTeX. ! Undefined control sequence.), and $x$ can have any value between$\minus{}2$(Error compiling LaTeX. ! Undefined control sequence.) and $2$, both included. The values of $x$ for which the numerator is greater than the denominator are:$\textbf{(A)}\ \frac{3}{5} < x \le 2\qquad \textbf{(B)}\ \frac{3}{5} \le x \le 2\qquad \textbf{(C)}\ 0 < x \le 2\qquad \\ \textbf{(D)}\ 0 \le x \le 2\qquad \textbf{(E)}\ \minus{}2 \le x \le 2$(Error compiling LaTeX. ! Undefined control sequence.) ## Problem 35 A triangle is formed by joining three points whose coordinates are integers. If the $x$-coordinate and the $y$-coordinate each have a value of $1$, then the area of the triangle, in square units: $\textbf{(A)}\ \text{must be an integer}\qquad \textbf{(B)}\ \text{may be irrational}\qquad \textbf{(C)}\ \text{must be irrational}\qquad \textbf{(D)}\ \text{must be rational}\qquad \\ \textbf{(E)}\ \text{will be an integer only if the triangle is equilateral.}$ ## Problem 36 The sides of a triangle are $30$, $70$, and $80$ units. If an altitude is dropped upon the side of length $80$, the larger segment cut off on this side is: $\textbf{(A)}\ 62\qquad \textbf{(B)}\ 63\qquad \textbf{(C)}\ 64\qquad \textbf{(D)}\ 65\qquad \textbf{(E)}\ 66$ ## Problem 37 The first term of an arithmetic series of consecutive integers is$k^2 \plus{} 1$(Error compiling LaTeX. ! Undefined control sequence.). The sum of$2k \plus{} 1$(Error compiling LaTeX. ! Undefined control sequence.) terms of this series may be expressed as:$\textbf{(A)}\ k^3 \plus{} (k \plus{} 1)^3\qquad \textbf{(B)}\ (k \minus{} 1)^3 \plus{} k^3\qquad \textbf{(C)}\ (k \plus{} 1)^3\qquad \\ \textbf{(D)}\ (k \plus{} 1)^2\qquad \textbf{(E)}\ (2k \plus{} 1)(k \plus{} 1)^2$(Error compiling LaTeX. ! Undefined control sequence.) ## Problem 38 Let $r$ be the distance from the origin to a point $P$ with coordinates $x$ and $y$. Designate the ratio $\frac{y}{r}$ by $s$ and the ratio $\frac{x}{r}$ by $c$. Then the values of$s^2 \minus{} c^2$(Error compiling LaTeX. ! Undefined control sequence.) are limited to the numbers:$\textbf{(A)}\ \text{less than }{\minus{}1}\text{ are greater than }{\plus{}1}\text{, both excluded}\qquad\\ \textbf{(B)}\ \text{less than }{\minus{}1}\text{ are greater than }{\plus{}1}\text{, both included}\qquad \\ \textbf{(C)}\ \text{between }{\minus{}1}\text{ and }{\plus{}1}\text{, both excluded}\qquad \\ \textbf{(D)}\ \text{between }{\minus{}1}\text{ and }{\plus{}1}\text{, both included}\qquad \\ \textbf{(E)}\ {\minus{}1}\text{ and }{\plus{}1}\text{ only}$(Error compiling LaTeX. ! Undefined control sequence.) ## Problem 39 We may say concerning the solution of $|x|^2 + |x| - 6 =0$ that:$\textbf{(A)}\ \text{there is only one root}\qquad \textbf{(B)}\ \text{the sum of the roots is }{\plus{}1}\qquad \textbf{(C)}\ \text{the sum of the roots is }{0}\qquad \\ \textbf{(D)}\ \text{the product of the roots is }{\plus{}4}\qquad \textbf{(E)}\ \text{the product of the roots is }{\minus{}6}$(Error compiling LaTeX. ! Undefined control sequence.) ## Problem 40 Given$a_0 \equal{} 1$(Error compiling LaTeX. ! Undefined control sequence.),$a_1 \equal{} 3$(Error compiling LaTeX. ! Undefined control sequence.), and the general relation$a_n^2 \minus{} a_{n \minus{} 1}a_{n \plus{} 1} \equal{} (\minus{}1)^n$(Error compiling LaTeX. ! Undefined control sequence.) for $n \ge 1$. Then $a_3$ equals:$\textbf{(A)}\ \frac{13}{27}\qquad \textbf{(B)}\ 33\qquad \textbf{(C)}\ 21\qquad \textbf{(D)}\ 10\qquad \textbf{(E)}\ \minus{}17$(Error compiling LaTeX. ! Undefined control sequence.) ## Problem 41 The roots of$Ax^2 \plus{} Bx \plus{} C \equal{} 0$(Error compiling LaTeX. ! Undefined control sequence.) are $r$ and $s$. For the roots of $x^2+px +q =0$ to be $r^2$ and $s^2$, $p$ must equal:$\textbf{(A)}\ \frac{B^2 \minus{} 4AC}{A^2}\qquad \textbf{(B)}\ \frac{B^2 \minus{} 2AC}{A^2}\qquad \textbf{(C)}\ \frac{2AC \minus{} B^2}{A^2}\qquad \\ \textbf{(D)}\ B^2 \minus{} 2C\qquad \textbf{(E)}\ 2C \minus{} B^2$(Error compiling LaTeX. ! Undefined control sequence.) ## Problem 42 In a circle with center $O$, chord $\overline{AB}$ equals chord $\overline{AC}$. Chord $\overline{AD}$ cuts $\overline{BC}$ in $E$. If$AC \equal{} 12$(Error compiling LaTeX. ! Undefined control sequence.) and$AE \equal{} 8$(Error compiling LaTeX. ! Undefined control sequence.), then $AD$ equals: $\textbf{(A)}\ 27\qquad \textbf{(B)}\ 24\qquad \textbf{(C)}\ 21\qquad \textbf{(D)}\ 20\qquad \textbf{(E)}\ 18$ ## Problem 43 $\overline{AB}$ is the hypotenuse of a right triangle $ABC$. Median $\overline{AD}$ has length $7$ and median $\overline{BE}$ has length $4$. The length of $\overline{AB}$ is: $\textbf{(A)}\ 10\qquad \textbf{(B)}\ 5\sqrt{3}\qquad \textbf{(C)}\ 5\sqrt{2}\qquad \textbf{(D)}\ 2\sqrt{13}\qquad \textbf{(E)}\ 2\sqrt{15}$ ## Problem 44 Given the true statements: (1) If $a$ is greater than $b$, then $c$ is greater than $d$ (2) If $c$ is less than $d$, then $e$ is greater than $f$. A valid conclusion is: $\textbf{(A)}\ \text{If }{a}\text{ is less than }{b}\text{, then }{e}\text{ is greater than }{f}\qquad \\ \textbf{(B)}\ \text{If }{e}\text{ is greater than }{f}\text{, then }{a}\text{ is less than }{b}\qquad \\ \textbf{(C)}\ \text{If }{e}\text{ is less than }{f}\text{, then }{a}\text{ is greater than }{b}\qquad \\ \textbf{(D)}\ \text{If }{a}\text{ is greater than }{b}\text{, then }{e}\text{ is less than }{f}\qquad \\ \textbf{(E)}\ \text{none of these}$ ## Problem 45 A check is written for $x$ dollars and $y$ cents, $x$ and $y$ both two-digit numbers. In error it is cashed for $y$ dollars and $x$ cents, the incorrect amount exceeding the correct amount by $$17.82$. Then:

$\textbf{(A)}\ {x}\text{ cannot exceed }{70}\qquad \\ \textbf{(B)}\ {y}\text{ can equal }{2x}\qquad\\ \textbf{(C)}\ \text{the amount of the check cannot be a multiple of }{5}\qquad \\ \textbf{(D)}\ \text{the incorrect amount can equal twice the correct amount}\qquad \\ \textbf{(E)}\ \text{the sum of the digits of the correct amount is divisible by }{9}$

## Problem 46

For values of $x$ less than $1$ but greater than $\minus{}4$ (Error compiling LaTeX. ! Undefined control sequence.), the expression $\frac{x^2 \minus{} 2x \plus{} 2}{2x \minus{} 2}$ (Error compiling LaTeX. ! Undefined control sequence.) has:

$\textbf{(A)}\ \text{no maximum or minimum value}\qquad \\ \textbf{(B)}\ \text{a minimum value of }{\plus{}1}\qquad \\ \textbf{(C)}\ \text{a maximum value of }{\plus{}1}\qquad \\ \textbf{(D)}\ \text{a minimum value of }{\minus{}1}\qquad \\ \textbf{(E)}\ \text{a maximum value of }{\minus{}1}$ (Error compiling LaTeX. ! Undefined control sequence.)

## Problem 47

$ABCD$ is a rectangle (see the accompanying diagram) with $P$ any point on $\overline{AB}$. $\overline{PS} \perp \overline{BD}$ and $\overline{PR} \perp \overline{AC}$. $\overline{AF} \perp \overline{BD}$ and $\overline{PQ} \perp \overline{AF}$. Then $PR \plus{} PS$ (Error compiling LaTeX. ! Undefined control sequence.) is equal to:

$[asy] draw((-2,-1)--(-2,1)--(2,1)--(2,-1)--cycle,dot); draw((-2,-1)--(2,1)--(2,-1)--(-2,1),dot); draw((-2,1)--(-6/5,-3/5),black+linewidth(.75)); draw((6/5,3/5)--(1,1)--(-3/2+1/10,-2/10),black+linewidth(.75)); draw((1,1)--(1-3/5,1-6/5),black+linewidth(.75)); MP("A",(-2,1),NW);MP("B",(2,1),NE);MP("C",(2,-1),SE);MP("D",(-2,-1),SW); MP("Q",(-3/2+1/10,-2/10),W);MP("T",(-2/5,1/5),N);MP("P",(1,1),N); MP("F",(-6/5,-3/5),SE);MP("E",(0,0),S);MP("S",(6/5,3/5),S);MP("R",(1-3/5,1-6/5),S); [/asy]$

$\textbf{(A)}\ PQ\qquad \textbf{(B)}\ AE\qquad \textbf{(C)}\ PT \plus{} AT\qquad \textbf{(D)}\ AF\qquad \textbf{(E)}\ EF$ (Error compiling LaTeX. ! Undefined control sequence.)

## Problem 48

Diameter $\overline{AB}$ of a circle with center $O$ is $10$ units. $C$ is a point $4$ units from $A$, and on $\overline{AB}$. $D$ is a point $4$ units from $B$, and on $\overline{AB}$. $P$ is any point on the circle. Then the broken-line path from $C$ to $P$ to $D$:

$\textbf{(A)}\ \text{has the same length for all positions of }{P}\qquad\\ \textbf{(B)}\ \text{exceeds }{10}\text{ units for all positions of }{P}\qquad \\ \textbf{(C)}\ \text{cannot exceed }{10}\text{ units}\qquad \\ \textbf{(D)}\ \text{is shortest when }{\triangle CPD}\text{ is a right triangle}\qquad \\ \textbf{(E)}\ \text{is longest when }{P}\text{ is equidistant from }{C}\text{ and }{D}.$

## Problem 49

In the expansion of $(a \plus{} b)^n$ (Error compiling LaTeX. ! Undefined control sequence.) there are $n \plus{} 1$ (Error compiling LaTeX. ! Undefined control sequence.) dissimilar terms. The number of dissimilar terms in the expansion of $(a \plus{} b \plus{} c)^{10}$ (Error compiling LaTeX. ! Undefined control sequence.) is:

$\textbf{(A)}\ 11\qquad \textbf{(B)}\ 33\qquad \textbf{(C)}\ 55\qquad \textbf{(D)}\ 66\qquad \textbf{(E)}\ 132$

## Problem 50

In this diagram a scheme is indicated for associating all the points of segment $\overline{AB}$ with those of segment $\overline{A'B'}$, and reciprocally. To described this association scheme analytically, let $x$ be the distance from a point $P$ on $\overline{AB}$ to $D$ and let $y$ be the distance from the associated point $P'$ of $\overline{A'B'}$ to $D'$. Then for any pair of associated points, if $x = a,\, x + y$ equals:

$[asy] draw((0,-3)--(0,3),black+linewidth(.75)); draw((1,-2.5)--(5,-2.5),black+linewidth(.75)); draw((3,2.5)--(4,2.5),black+linewidth(.75)); draw((1,-2.5)--(4,2.5),black+linewidth(.75)); draw((5,-2.5)--(3,2.5),black+linewidth(.75)); draw((2.6,-2.5)--(3.6,2.5),black+linewidth(.75)); dot((0,2.5));dot((1,2.5));dot((2,2.5));dot((3,2.5));dot((4,2.5));dot((5,2.5)); dot((0,-2.5));dot((1,-2.5));dot((2,-2.5));dot((3,-2.5));dot((4,-2.5));dot((5,-2.5)); MP("D",(0,2.5),NW);MP("A",(3,2.5),N);MP("P",(3.5,2.5),N);MP("B",(4,2.5),N); MP("D'",(0,-2.5),NW);MP("B'",(1,-2.5),NW);MP("P'",(2.25,-2.5),N);MP("A'",(5,-2.5),NE); MP("0",(0,2.5),SE);MP("1",(1,2.5),SE);MP("2",(2,2.5),SE);MP("3",(3,2.5),SE);MP("4",(4,2.5),SE);MP("5",(5,2.5),SE); MP("0",(0,-2.5),SE);MP("1",(1,-2.5),SE);MP("2",(2,-2.5),SE);MP("3",(3,-2.5),SE);MP("4",(4,-2.5),SE);MP("5",(5,-2.5),SE); [/asy]$

$\textbf{(A)}\ 13a\qquad \textbf{(B)}\ 17a \minus{} 51\qquad \textbf{(C)}\ 17 \minus{} 3a\qquad \textbf{(D)}\ \frac {17 \minus{} 3a}{4}\qquad \textbf{(E)}\ 12a \minus{} 34$ (Error compiling LaTeX. ! Undefined control sequence.)