Difference between revisions of "1958 AHSME Problems/Problem 27"

(Created page with "== Problem == The points <math> (2,\minus{}3)</math>, <math> (4,3)</math>, and <math> (5, k/2)</math> are on the same straight line. The value(s) of <math> k</math> is (are): <m...")
 
m (Problem)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
The points <math> (2,\minus{}3)</math>, <math> (4,3)</math>, and <math> (5, k/2)</math> are on the same straight line. The value(s) of <math> k</math> is (are):
+
The points <math> (2,-3)</math>, <math> (4,3)</math>, and <math> (5, k/2)</math> are on the same straight line. The value(s) of <math> k</math> is (are):
  
 
<math> \textbf{(A)}\ 12\qquad  
 
<math> \textbf{(A)}\ 12\qquad  
\textbf{(B)}\ \minus{}12\qquad  
+
\textbf{(B)}\ -12\qquad  
 
\textbf{(C)}\ \pm 12\qquad  
 
\textbf{(C)}\ \pm 12\qquad  
 
\textbf{(D)}\ {12}\text{ or }{6}\qquad  
 
\textbf{(D)}\ {12}\text{ or }{6}\qquad  
 
\textbf{(E)}\ {6}\text{ or }{6\frac{2}{3}}</math>
 
\textbf{(E)}\ {6}\text{ or }{6\frac{2}{3}}</math>
 
  
 
== Solution ==
 
== Solution ==

Revision as of 23:20, 13 March 2015

Problem

The points $(2,-3)$, $(4,3)$, and $(5, k/2)$ are on the same straight line. The value(s) of $k$ is (are):

$\textbf{(A)}\ 12\qquad  \textbf{(B)}\ -12\qquad  \textbf{(C)}\ \pm 12\qquad  \textbf{(D)}\ {12}\text{ or }{6}\qquad  \textbf{(E)}\ {6}\text{ or }{6\frac{2}{3}}$

Solution

$\fbox{}$

See Also

1958 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 26
Followed by
Problem 28
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS