1959 AHSME Problems/Problem 35

Revision as of 23:59, 31 July 2019 by Toinfinity (talk | contribs) (Problem 35)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem 35

The symbol $\ge$ means "greater than or equal to"; the symbol $\le$ means "less than or equal to". In the equation $(x-m)^2-(x-n)^2=(m-n)^2; m$ is a fixed positive number, and $n$ is a fixed negative number. The set of values x satisfying the equation is: $\textbf{(A)}\ x\ge 0 \qquad\textbf{(B)}\ x\le n\qquad\textbf{(C)}\ x=0\qquad\textbf{(D)}\ \text{the set of all real numbers}\qquad\textbf{(E)}\ \text{none of these}$

Applying the difference of squares technique on this problem, we can see that \[(x-m)^2-(x-n)^2=((x-m)+(x-n)) \cdot ((x-m)-(x-n)),\] so \[(x-m)^2-(x-n)^2=((x-m)+(x-n)) \cdot ((x-m)-(x-n))=(m-n)^2.\] Simplifying gives us\[(2x-m-n)\cdot(n-m)=(m-n)^2.\]Negating $n-m$ creates:\[-(2x-m-n)\cdot(m-n)=(m-n)^2.\]Dividing by $m-n$, \[-(2x-m-n)=m-n\] \[-2x+m+n=m-n\] \[-2x+n=-n\] \[-2x=-2n\] \[x=n\]Lastly, since $n$ is a fixed negative number, $x$ must also be a fixed negative number, so $x<0$. Since this answer is not $A, B, C,$ or $D$, the solution must be $(E)$ none of these.

See also

1959 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 34
Followed by
Problem 36
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png