1960 IMO Problems/Problem 3

Revision as of 20:20, 25 October 2007 by Temperal (talk | contribs) (See also: no header)


In a given right triangle $ABC$, the hypotenuse $BC$, of length $a$, is divided into $n$ equal parts ($n$ and odd integer). Let $\alpha$ be the acute angle subtending, from $A$, that segment which contains the midpoint of the hypotenuse. Let $h$ be the length of the altitude to the hypotenuse of the triangle. Prove that:



This problem needs a solution. If you have a solution for it, please help us out by adding it.

1960 IMO (Problems) • Resources
Preceded by
Problem 2
1 2 3 4 5 6 Followed by
Problem 4
All IMO Problems and Solutions
Invalid username
Login to AoPS