Difference between revisions of "1961 AHSME Problems/Problem 8"

Line 10: Line 10:
(E) <math>C_1-C_2=A+B</math>
(E) <math>C_1-C_2=A+B</math>
{{MAA Notice}}

Revision as of 12:36, 5 July 2013

Let the two base angles of a triangle be A and B, with B larger than A. The altitude to the base divides the vertex angle C into two parts, $C_1$ and $C_2$, with $C_2$ adjacent to side a. Then:

(A) $C_1+C_2=A+B$

(B) $C_1-C_2=B-A$

(C) $C_1-C_2=A-B$

(D) $C_1+C_2=B-A$

(E) $C_1-C_2=A+B$ The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS