Difference between revisions of "1961 IMO Problems"

(Problem 4)
(Problem 5)
Line 45: Line 45:
 
===Problem 5===
 
===Problem 5===
  
[[1961 IMO Problems/Problem 5 | Solution]]
+
Construct a triangle ''ABC'' if the following elements are given: <math>AC = b, AB = c</math>, and <math>\angle AMB = \omega \left(\omega < 90^{\circ}\right)</math> where ''M'' is the midpoint of ''BC''.  Prove that the construction has a solution if and only if
 +
 
 +
<math>b \tan{\frac{\omega}{2}} \le c < b</math>
  
 +
In what case does equality hold?
  
 +
[[1961 IMO Problems/Problem 5 | Solution]]
  
 
===Problem 6===
 
===Problem 6===

Revision as of 10:34, 12 October 2007

Day I

Problem 1

(Hungary) Solve the system of equations:

$\begin{matrix} \quad x + y + z \!\!\! &= a \; \, \\ x^2 +y^2+z^2 \!\!\! &=b^2 \\ \qquad \qquad xy \!\!\!  &= z^2 \end{matrix}$

where $a$ and $b$ are constants. Give the conditions that $a$ and $b$ must satisfy so that $x, y, z$ (the solutions of the system) are distinct positive numbers.

Solution

Problem 2

Let a,b, and c be the lengths of a triangle whose area is S. Prove that

$a^2 + b^2 + c^2 \ge 4S\sqrt{3}$

In what case does equality hold?

Solution

Problem 3

Solve the equation

$\cos^n{x} - \sin^n{x} = 1$

where n is a given positive integer.

Solution

Day 2

Problem 4

In the interior of triangle $ABC$ a point P is given. Let $Q_1,Q_2,Q_3$ be the intersections of $PP_1, PP_2,PP_3$ with the opposing edges of triangle $ABC$. Prove that among the ratios $\frac{PP_1}{PQ_1},\frac{PP_2}{PQ_2},\frac{PP_3}{PQ_3}$ there exists one not larger than 2 and one not smaller than 2.

Solution

Problem 5

Construct a triangle ABC if the following elements are given: $AC = b, AB = c$, and $\angle AMB = \omega \left(\omega < 90^{\circ}\right)$ where M is the midpoint of BC. Prove that the construction has a solution if and only if

$b \tan{\frac{\omega}{2}} \le c < b$

In what case does equality hold?

Solution

Problem 6

Solution



See Also

Invalid username
Login to AoPS