Difference between revisions of "1961 IMO Problems/Problem 2"

(Problem: LaTeX)
(Solution)
(3 intermediate revisions by 2 users not shown)
Line 9: Line 9:
 
==Solution==
 
==Solution==
  
{{solution}}
+
Substitute <math>S=\sqrt{s(s-a)(s-b)(s-c)}</math>, where <math>s=\frac{a+b+c}{2}</math>
  
 +
This shows that the inequality is equivalent to <math>a^2b^2+b^2c^2+c^2a^2\le a^4+b^4+c^4</math>.
  
{{IMO box|year=1961|num-b=1|num-a=2}}
+
This can be proven because <math>a^2b^2\le\frac{a^4+b^4}{2}</math>. The equality holds when <math>a=b=c</math>, or when the triangle is equilateral.
==See Also==
 
  
[[1961 IMO Problems]]
+
 
 +
{{IMO box|year=1961|num-b=1|num-a=3}}

Revision as of 11:37, 28 December 2007

Problem

Let $a$, $b$, and $c$ be the lengths of a triangle whose area is S. Prove that

$a^2 + b^2 + c^2 \ge 4S\sqrt{3}$

In what case does equality hold?

Solution

Substitute $S=\sqrt{s(s-a)(s-b)(s-c)}$, where $s=\frac{a+b+c}{2}$

This shows that the inequality is equivalent to $a^2b^2+b^2c^2+c^2a^2\le a^4+b^4+c^4$.

This can be proven because $a^2b^2\le\frac{a^4+b^4}{2}$. The equality holds when $a=b=c$, or when the triangle is equilateral.


1961 IMO (Problems) • Resources
Preceded by
Problem 1
1 2 3 4 5 6 Followed by
Problem 3
All IMO Problems and Solutions