# 1962 AHSME Problems

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

## Problem 1

The expression $\frac{1^{4y-1}}{5^{-1}+3^{-1}}$ is equal to: $\textbf{(A)}\ \frac{4y-1}{8}\qquad\textbf{(B)}\ 8\qquad\textbf{(C)}\ \frac{15}{2}\qquad\textbf{(D)}\ \frac{15}{8}\qquad\textbf{(E)}\ \frac{1}{8}$

## Problem 2

The expression $\sqrt{\frac{4}{3}} - \sqrt{\frac{3}{4}$ (Error compiling LaTeX. ! Missing } inserted.) is equal to: $\textbf{(A)}\ \frac{\sqrt{3}}{6}\qquad\textbf{(B)}\ \frac{-\sqrt{3}}{6}\qquad\textbf{(C)}\ \frac{\sqrt{-3}}{6}\qquad\textbf{(D)}\ \frac{5\sqrt{3}}{6}\qquad\textbf{(E)}\ 1$

## Problem 3

The first three terms of an arithmetic progression are $x - 1, x + 1, 2x + 3$, in the order shown. The value of $x$ is: $\textbf{(A)}\ -2\qquad\textbf{(B)}\ 0\qquad\textbf{(C)}\ 2\qquad\textbf{(D)}\ 4\qquad\textbf{(E)}\ \text{undetermined}$

## Problem 4

If $8^x = 32$, then x equals: $\textbf{(A)}\ 4\qquad\textbf{(B)}\ \frac{5}{3}\qquad\textbf{(C)}\ \frac{3}{2}\qquad\textbf{(D)}\ \frac{3}{5}\qquad\textbf{(E)}\ \frac{1}{4}$