Difference between revisions of "1963 AHSME Problems/Problem 40"

(Created page with "Let <math>a = \sqrt[3]{x + 9}</math> and <math>b = \sqrt[3]{x - 9}</math>. Cubing these equations, we get <math>a^3 = x + 9</math> and <math>b^3 = x - 9</math>, so <math>a^3 -...")
 
(Visual upgrade!)
Line 1: Line 1:
 +
== Problem 40==
 +
 +
If <math>x</math> is a number satisfying the equation <math>\sqrt[3]{x+9}-\sqrt[3]{x-9}=3</math>, then <math>x^2</math> is between:
 +
 +
<math>\textbf{(A)}\ 55\text{ and }65\qquad
 +
\textbf{(B)}\ 65\text{ and }75\qquad
 +
\textbf{(C)}\ 75\text{ and }85\qquad
 +
\textbf{(D)}\ 85\text{ and }95\qquad
 +
\textbf{(E)}\ 95\text{ and }105 </math>
 +
 +
==Solution==
 +
 
Let <math>a = \sqrt[3]{x + 9}</math> and <math>b = \sqrt[3]{x - 9}</math>. Cubing these equations, we get <math>a^3 = x + 9</math> and <math>b^3 = x - 9</math>, so <math>a^3 - b^3 = 18</math>. The left-hand side factors as
 
Let <math>a = \sqrt[3]{x + 9}</math> and <math>b = \sqrt[3]{x - 9}</math>. Cubing these equations, we get <math>a^3 = x + 9</math> and <math>b^3 = x - 9</math>, so <math>a^3 - b^3 = 18</math>. The left-hand side factors as
 
<cmath>(a - b)(a^2 + ab + b^2) = 18.</cmath>
 
<cmath>(a - b)(a^2 + ab + b^2) = 18.</cmath>
Line 4: Line 16:
 
However, from the given equation <math>\sqrt[3]{x + 9} - \sqrt[3]{x - 9} = 3</math>, we get <math>a - b = 3</math>. Then <math>3(a^2 + ab + b^2) = 18</math>, so <math>a^2 + ab + b^2 = 18/3 = 6</math>.
 
However, from the given equation <math>\sqrt[3]{x + 9} - \sqrt[3]{x - 9} = 3</math>, we get <math>a - b = 3</math>. Then <math>3(a^2 + ab + b^2) = 18</math>, so <math>a^2 + ab + b^2 = 18/3 = 6</math>.
  
Squaring the equation <math>a - b = 3</math>, we get <math>a^2 - 2ab + b^2 = 9</math>. Subtracting this equation from the equation <math>a^2 + ab + b^2 = 6</math>, we get <math>3ab = -3</math>, so <math>ab = -1</math>. But <math>a = \sqrt[3]{x + 9}</math> and <math>b = \sqrt[3]{x - 9}</math>, so <math>ab = \sqrt[3]{(x + 9)(x - 9)} = \sqrt[3]{x^2 - 81}</math>, so <math>\sqrt[3]{x^2 - 81} = -1</math>. Cubing both sides, we get <math>x^2 - 81 = -1</math>, so <math>x^2 = \boxed{80}</math>. The answer is (C).
+
Squaring the equation <math>a - b = 3</math>, we get <math>a^2 - 2ab + b^2 = 9</math>. Subtracting this equation from the equation <math>a^2 + ab + b^2 = 6</math>, we get <math>3ab = -3</math>, so <math>ab = -1</math>. But <math>a = \sqrt[3]{x + 9}</math> and <math>b = \sqrt[3]{x - 9}</math>, so <math>ab = \sqrt[3]{(x + 9)(x - 9)} = \sqrt[3]{x^2 - 81}</math>, so <math>\sqrt[3]{x^2 - 81} = -1</math>. Cubing both sides, we get <math>x^2 - 81 = -1</math>, so <math>x^2 = 80</math>. The answer is <math>\boxed{\textbf{(C)}}</math>.
 +
 
 +
==See Also==
 +
{{AHSME 40p box|year=1963|num-b=39|after=Last Problem}}
 +
 
 +
[[Category:Intermediate Algebra Problems]]
 +
 
 +
{{MAA Notice}}

Revision as of 02:59, 7 June 2018

Problem 40

If $x$ is a number satisfying the equation $\sqrt[3]{x+9}-\sqrt[3]{x-9}=3$, then $x^2$ is between:

$\textbf{(A)}\ 55\text{ and }65\qquad \textbf{(B)}\ 65\text{ and }75\qquad \textbf{(C)}\ 75\text{ and }85\qquad \textbf{(D)}\ 85\text{ and }95\qquad \textbf{(E)}\ 95\text{ and }105$

Solution

Let $a = \sqrt[3]{x + 9}$ and $b = \sqrt[3]{x - 9}$. Cubing these equations, we get $a^3 = x + 9$ and $b^3 = x - 9$, so $a^3 - b^3 = 18$. The left-hand side factors as \[(a - b)(a^2 + ab + b^2) = 18.\]

However, from the given equation $\sqrt[3]{x + 9} - \sqrt[3]{x - 9} = 3$, we get $a - b = 3$. Then $3(a^2 + ab + b^2) = 18$, so $a^2 + ab + b^2 = 18/3 = 6$.

Squaring the equation $a - b = 3$, we get $a^2 - 2ab + b^2 = 9$. Subtracting this equation from the equation $a^2 + ab + b^2 = 6$, we get $3ab = -3$, so $ab = -1$. But $a = \sqrt[3]{x + 9}$ and $b = \sqrt[3]{x - 9}$, so $ab = \sqrt[3]{(x + 9)(x - 9)} = \sqrt[3]{x^2 - 81}$, so $\sqrt[3]{x^2 - 81} = -1$. Cubing both sides, we get $x^2 - 81 = -1$, so $x^2 = 80$. The answer is $\boxed{\textbf{(C)}}$.

See Also

1963 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 39
Followed by
Last Problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png