Difference between revisions of "1964 AHSME Problems/Problem 29"

(Solution)
 
(One intermediate revision by one other user not shown)
Line 29: Line 29:
 
We examine <math>\triangle RDF</math> and <math>\triangle SFR</math>.  We are given <math>\angle RDF \cong \angle SFR</math>. Also note that <math>\frac{SF}{RD} = \frac{7.5}{6} = 1.25</math> and <math>\frac{FR}{DF} = \frac{5}{4} = 1.25</math>, so <math>\frac{SF}{RD} = \frac{FR}{DF}</math>.
 
We examine <math>\triangle RDF</math> and <math>\triangle SFR</math>.  We are given <math>\angle RDF \cong \angle SFR</math>. Also note that <math>\frac{SF}{RD} = \frac{7.5}{6} = 1.25</math> and <math>\frac{FR}{DF} = \frac{5}{4} = 1.25</math>, so <math>\frac{SF}{RD} = \frac{FR}{DF}</math>.
  
If two triangles have two pairs of sides that are proportional, and the included angle is congruent, then the two triangles are similar by SAS congruence.  Therefore, the third pair of sides must also be in the same proportion, so  
+
If two triangles have two pairs of sides that are proportional, and the included angles are congruent, then the two triangles are similar by SAS congruence.  Therefore, the third pair of sides must also be in the same proportion, so  
  
 
<math>\frac{SF}{RD} = \frac{FR}{DF} = \frac{RS}{FR} = 1.25</math>  
 
<math>\frac{SF}{RD} = \frac{FR}{DF} = \frac{RS}{FR} = 1.25</math>  
Line 38: Line 38:
  
 
<math>RS = 6.25</math>, which is answer <math>\boxed{\textbf{(E) }}</math>
 
<math>RS = 6.25</math>, which is answer <math>\boxed{\textbf{(E) }}</math>
 +
 +
==Solution 2==
 +
 +
Let <math>\angle RFS = \angle FDR = \theta</math>. By Cosine Law, we have:
 +
<cmath>
 +
\begin{align*}
 +
RF^2 &= DR^2 + DF^2 - 2(DR)(DF)cos(\theta) \\
 +
5^2 &= 6^2 + 4^2 - 2(6)(4)cos(\theta) \\
 +
cos(\theta) &= \frac{6^2+4^2-5^2}{2(6)(4)} = \frac{9}{16}
 +
\end{align*}
 +
</cmath>
 +
Applying Cosine Law again in <math>\triangle RFS</math>, we have:
 +
<cmath>
 +
\begin{align*}
 +
RS^2 &= RF^2 + FS^2 - 2(RF)(FS)cos(\theta) \\
 +
RS^2 &= 25 + (\frac{15}{2})^2 - 2(5)(\frac{15}{2})(\frac{9}{16}) \\
 +
RS^2 &= \frac{625}{16}
 +
\end{align*}
 +
</cmath>
 +
giving us <math>RS = \frac{25}{4}</math>, which is the answer <math>\boxed{\textbf{(E)}}</math>. -nullptr07
  
 
==See Also==
 
==See Also==

Latest revision as of 22:59, 29 June 2023

Problem

In this figure $\angle RFS=\angle FDR$, $FD=4$ inches, $DR=6$ inches, $FR=5$ inches, $FS=7\dfrac{1}{2}$ inches. The length of $RS$, in inches, is:

$\textbf{(A) }\text{undetermined}\qquad\textbf{(B) }4\qquad\textbf{(C) }5\dfrac{1}{2}\qquad\textbf{(D) }6\qquad\textbf{(E) }6\dfrac{1}{2}\qquad$

[asy] import olympiad;  draw((0,0)--7.5*dir(0)); draw((0,0)--5*dir(55)); draw((0,0)--4*dir(140)); draw(4*dir(140)--5*dir(55)--7.5*dir(0)); markscalefactor=0.1; draw(anglemark((0,0),4*dir(140),5*dir(55))); draw(anglemark(7.5*dir(0),(0,0),5*dir(55))); label("$F$",(0,0),dir(240)); label("$D$",4*dir(140),dir(180)); label("$R$",5*dir(55),dir(80)); label("$S$",7.5*dir(0),dir(-25)); label("$4$",2*dir(140),dir(230)); label("$5$",2.5*dir(55),dir(155)); label("$6$",(4*dir(140)+5*dir(55))/2,dir(100)); label("$7\frac{1}{2}$",3.75,dir(-90)); [/asy]

Solution

We examine $\triangle RDF$ and $\triangle SFR$. We are given $\angle RDF \cong \angle SFR$. Also note that $\frac{SF}{RD} = \frac{7.5}{6} = 1.25$ and $\frac{FR}{DF} = \frac{5}{4} = 1.25$, so $\frac{SF}{RD} = \frac{FR}{DF}$.

If two triangles have two pairs of sides that are proportional, and the included angles are congruent, then the two triangles are similar by SAS congruence. Therefore, the third pair of sides must also be in the same proportion, so

$\frac{SF}{RD} = \frac{FR}{DF} = \frac{RS}{FR} = 1.25$

$\frac{RS}{FR} = 1.25$

$\frac{RS}{5} = 1.25$

$RS = 6.25$, which is answer $\boxed{\textbf{(E) }}$

Solution 2

Let $\angle RFS = \angle FDR = \theta$. By Cosine Law, we have: \begin{align*} RF^2 &= DR^2 + DF^2 - 2(DR)(DF)cos(\theta) \\ 5^2 &= 6^2 + 4^2 - 2(6)(4)cos(\theta) \\ cos(\theta) &= \frac{6^2+4^2-5^2}{2(6)(4)} = \frac{9}{16} \end{align*} Applying Cosine Law again in $\triangle RFS$, we have: \begin{align*} RS^2 &= RF^2 + FS^2 - 2(RF)(FS)cos(\theta) \\ RS^2 &= 25 + (\frac{15}{2})^2 - 2(5)(\frac{15}{2})(\frac{9}{16}) \\ RS^2 &= \frac{625}{16} \end{align*} giving us $RS = \frac{25}{4}$, which is the answer $\boxed{\textbf{(E)}}$. -nullptr07

See Also

1964 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 28
Followed by
Problem 30
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png