Difference between revisions of "1964 AHSME Problems/Problem 37"

(Created page with "==Problem== Given two positive number <math>a</math>, <math>b</math> such that <math>a<b</math>. Let A.M. be their arithmetic mean and let <math>G.M. be their positive geometric...")
 
m (Solution)
 
(5 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 
==Problem==
 
==Problem==
  
Given two positive number <math>a</math>, <math>b</math> such that <math>a<b</math>. Let A.M. be their arithmetic mean and let <math>G.M. be their positive geometric mean. Then A.M. minus G.M. is always less than:
+
Given two positive numbers <math>a</math>, <math>b</math> such that <math>a<b</math>. Let <math>A.M.</math> be their arithmetic mean and let <math>G.M.</math> be their positive geometric mean. Then <math>A.M.</math> minus <math>G.M.</math> is always less than:
  
</math>\textbf{(A) }\dfrac{(b+a)^2}{ab}\qquad\textbf{(B) }\dfrac{(b+a)^2}{8b}\qquad\textbf{(C) }\dfrac{(b-a)^2}{ab}<math>
+
<math>\textbf{(A) }\dfrac{(b+a)^2}{ab}\qquad\textbf{(B) }\dfrac{(b+a)^2}{8b}\qquad\textbf{(C) }\dfrac{(b-a)^2}{ab}</math>
  
</math>\textbf{(D) }\dfrac{(b-a)^2}{8a}\qquad \textbf{(E) }\dfrac{(b-a)^2}{8b}$
+
<math>\textbf{(D) }\dfrac{(b-a)^2}{8a}\qquad \textbf{(E) }\dfrac{(b-a)^2}{8b}</math>
 +
 
 +
==Solution==
 +
<math>\boxed{ \textbf{(D)} }</math>
 +
 
 +
==See Also==
 +
{{AHSME 40p box|year=1964|num-b=36|num-a=38}}
 +
 
 +
[[Category:Introductory Algebra Problems]]
 +
 
 +
{{MAA Notice}}

Latest revision as of 19:47, 26 January 2021

Problem

Given two positive numbers $a$, $b$ such that $a<b$. Let $A.M.$ be their arithmetic mean and let $G.M.$ be their positive geometric mean. Then $A.M.$ minus $G.M.$ is always less than:

$\textbf{(A) }\dfrac{(b+a)^2}{ab}\qquad\textbf{(B) }\dfrac{(b+a)^2}{8b}\qquad\textbf{(C) }\dfrac{(b-a)^2}{ab}$

$\textbf{(D) }\dfrac{(b-a)^2}{8a}\qquad \textbf{(E) }\dfrac{(b-a)^2}{8b}$

Solution

$\boxed{ \textbf{(D)} }$

See Also

1964 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 36
Followed by
Problem 38
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png