Difference between revisions of "1966 AHSME Problems/Problem 8"

(New page: ==Problem== The length of the common chord of two intersecting circles is <math>16</math> feet. If the radii are <math>10</math> feet and <math>17</math> feet, a possible value for the dis...)
 
 
(6 intermediate revisions by 2 users not shown)
Line 5: Line 5:
  
 
==Solution==
 
==Solution==
[[Image:1966_AHSME-8.jpg]]
+
[[Image:1966 AHSME-8.JPG]]
 +
 
 +
 
 
Let <math>O</math> be the center of the circle of radius <math>10</math> and <math>P</math> be the center of the circle of radius <math>17</math>. Chord <math>\overline{AB} = 16</math> feet.
 
Let <math>O</math> be the center of the circle of radius <math>10</math> and <math>P</math> be the center of the circle of radius <math>17</math>. Chord <math>\overline{AB} = 16</math> feet.
<math>\overline{OA} = \overline{OB} = 10</math> feet, since they are radii of a circle. Hence, <math>\triangle OAB</math> is isoceles with base <math>AB</math>. The height of <math>\trianlge OAB</math> from <math>O</math> to <math>AB</math> is <math>\sqrt {\overline{OB}^2 - \frac{\overline{AB}}{2}^2}</math>
+
 
 +
<math>\overline{OA} = \overline{OB} = 10</math> feet, since they are radii of the same circle. Hence, <math>\triangle OAB</math> is isoceles with base <math>AB</math>. The height of <math>\triangle OAB</math> from <math>O</math> to <math>AB</math> is <math>\sqrt {\overline{OB}^2 - (\frac{\overline{AB}}{2})^2} = \sqrt {10^2 - (\frac{16}{2})^2} = \sqrt {100 - 8^2} = \sqrt {100 - 64} = \sqrt {36} = 6</math>
 +
 
 +
Similarly, <math>\overline{PA} = \overline{PB} = 17</math>. Therefore, <math>\triangle PAB</math> is also isoceles with base <math>AB</math>. The height of the triangle from <math>P</math> to <math>AB</math> is <math>\sqrt {\overline{PB}^2 - (\frac{\overline{AB}}{2})^2} = \sqrt {17^2 - (\frac{16}{2})^2} = \sqrt {289 - 8^2} = \sqrt {289 - 64} = \sqrt {225} = 15</math>
 +
 
 +
The distance between the centers of the circles (points <math>P</math> and <math>O</math>) is the sum of the heights of <math>\triangle OAB</math> and <math>\triangle PAB</math>, which is <math>6 + 15 = 21 \Rightarrow \textbf{(B)}</math>
 +
 
 +
{{AHSME box|year=1966|num-b=7|num-a=9}} 
 +
 
 +
{{MAA Notice}}

Latest revision as of 01:45, 26 June 2016

Problem

The length of the common chord of two intersecting circles is $16$ feet. If the radii are $10$ feet and $17$ feet, a possible value for the distance between the centers of the circles, expressed in feet, is:

$\text{(A)} \ 27 \qquad \text{(B)} \ 21 \qquad \text{(C)} \ \sqrt {389} \qquad \text{(D)} \ 15 \qquad \text{(E)} \ \text{undetermined}$

Solution

1966 AHSME-8.JPG


Let $O$ be the center of the circle of radius $10$ and $P$ be the center of the circle of radius $17$. Chord $\overline{AB} = 16$ feet.

$\overline{OA} = \overline{OB} = 10$ feet, since they are radii of the same circle. Hence, $\triangle OAB$ is isoceles with base $AB$. The height of $\triangle OAB$ from $O$ to $AB$ is $\sqrt {\overline{OB}^2 - (\frac{\overline{AB}}{2})^2} = \sqrt {10^2 - (\frac{16}{2})^2} = \sqrt {100 - 8^2} = \sqrt {100 - 64} = \sqrt {36} = 6$

Similarly, $\overline{PA} = \overline{PB} = 17$. Therefore, $\triangle PAB$ is also isoceles with base $AB$. The height of the triangle from $P$ to $AB$ is $\sqrt {\overline{PB}^2 - (\frac{\overline{AB}}{2})^2} = \sqrt {17^2 - (\frac{16}{2})^2} = \sqrt {289 - 8^2} = \sqrt {289 - 64} = \sqrt {225} = 15$

The distance between the centers of the circles (points $P$ and $O$) is the sum of the heights of $\triangle OAB$ and $\triangle PAB$, which is $6 + 15 = 21 \Rightarrow \textbf{(B)}$

1966 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions


The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png