Difference between revisions of "1966 IMO Problems/Problem 6"
(added solution) |
(→Solution) |
||
(One intermediate revision by one other user not shown) | |||
Line 5: | Line 5: | ||
Let the lengths of sides <math>BC</math>, <math>CA</math>, and <math>AB</math> be <math>a</math>, <math>b</math>, and <math>c</math>, respectively. Let <math>BK=d</math>, <math>CL=e</math>, and <math>AM=f</math>. | Let the lengths of sides <math>BC</math>, <math>CA</math>, and <math>AB</math> be <math>a</math>, <math>b</math>, and <math>c</math>, respectively. Let <math>BK=d</math>, <math>CL=e</math>, and <math>AM=f</math>. | ||
− | Now assume for the sake of contradiction that the areas of <math>\Delta AML</math>, <math>\Delta BKM</math>, and <math>\Delta CLK</math> are all at greater | + | Now assume for the sake of contradiction that the areas of <math>\Delta AML</math>, <math>\Delta BKM</math>, and <math>\Delta CLK</math> are all at greater than one fourth of that of <math>\Delta ABC</math>. Therefore |
<cmath>\frac{AM\cdot AL\sin{\angle BAC}}{2}>\frac{AB\cdot AC\sin{\angle BAC}}{8}</cmath> | <cmath>\frac{AM\cdot AL\sin{\angle BAC}}{2}>\frac{AB\cdot AC\sin{\angle BAC}}{8}</cmath> | ||
Line 18: | Line 18: | ||
This is a contradiction, which shows that our assumption must have been false in the first place. This proves the desired result. | This is a contradiction, which shows that our assumption must have been false in the first place. This proves the desired result. | ||
+ | |||
+ | ==Solution 2== | ||
+ | Let <math>AR : AB = x, BP : BC = y, CQ : CA = z</math>. Then it is clear that the ratio of areas of <math>AQR, BPR, CPQ</math> to that of <math>ABC</math> equals <math>x(1-y), y(1-z), z(1-x)</math>, respectively. Suppose all three quantities exceed <math>\frac{1}{4}</math>. Then their product also exceeds <math>\frac{1}{64}</math>. However, it is clear by AM-GM that <math>x(1-x) \le \frac{1}{4}</math>, and so the product of all three quantities cannot exceed <math>\frac{1}{64}</math> (by the associative property of multiplication), a contradiction. Hence, at least one area is less than or equal to <math>\frac{1}{4} [ABC]</math>. | ||
+ | |||
== See Also == | == See Also == | ||
{{IMO box|year=1966|num-b=5|after=Last Problem}} | {{IMO box|year=1966|num-b=5|after=Last Problem}} | ||
[[Category:Olympiad Geometry Problems]] | [[Category:Olympiad Geometry Problems]] |
Latest revision as of 00:37, 17 May 2015
Contents
Problem
In the interior of sides of triangle
, any points
, respectively, are selected. Prove that the area of at least one of the triangles
is less than or equal to one quarter of the area of triangle
.
Solution
Let the lengths of sides ,
, and
be
,
, and
, respectively. Let
,
, and
.
Now assume for the sake of contradiction that the areas of ,
, and
are all at greater than one fourth of that of
. Therefore
In other words, , or
. Similarly,
and
. Multiplying these three inequalities together yields
We also have that ,
, and
from the Arithmetic Mean-Geometric Mean Inequality. Multiplying these three inequalities together yields
This is a contradiction, which shows that our assumption must have been false in the first place. This proves the desired result.
Solution 2
Let . Then it is clear that the ratio of areas of
to that of
equals
, respectively. Suppose all three quantities exceed
. Then their product also exceeds
. However, it is clear by AM-GM that
, and so the product of all three quantities cannot exceed
(by the associative property of multiplication), a contradiction. Hence, at least one area is less than or equal to
.
See Also
1966 IMO (Problems) • Resources | ||
Preceded by Problem 5 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Last Problem |
All IMO Problems and Solutions |