1967 AHSME Problems/Problem 17

Revision as of 02:03, 13 July 2019 by Talkinaway (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

If $r_1$ and $r_2$ are the distinct real roots of $x^2+px+8=0$, then it must follow that:

$\textbf{(A)}\ |r_1+r_2|>4\sqrt{2}\qquad \textbf{(B)}\ |r_1|>3 \; \text{or} \; |r_2| >3 \\ \textbf{(C)}\ |r_1|>2 \; \text{and} \; |r_2|>2\qquad \textbf{(D)}\ r_1<0 \; \text{and} \; r_2<0\qquad \textbf{(E)}\ |r_1+r_2|<4\sqrt{2}$

Solution

We are given that the roots are real, so the discriminant is positive, which means $p^2 - 4(8)(1) > 0$. This leads to $|p| > 4\sqrt{2}$. By Vieta, the sum of the roots is $-p$, so we have $|-(r_1 + r_2)| \ge 4\sqrt{2}$, or $|r_1 + r_2| > 4\sqrt{2}$, which is option $\fbox{A}$.

See also

1967 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS