Difference between revisions of "1967 AHSME Problems/Problem 32"

(Fixed problem statement.)
(See also)
(8 intermediate revisions by 3 users not shown)
Line 1: Line 1:
== Problem ==
+
In quadrilateral <math>ABCD</math> with diagonals <math>AC</math> and <math>BD</math>, intersecting at <math>O</math>, <math>BO=4</math>, <math>OD = 6</math>, <math>AO=8</math>, <math>OC=3</math>, and <math>AB=6</math>. The length of <math>AD</math> is:
In quadrilateral <math>ABCD</math> with diagonals <math>AC</math> and <math>BD</math>, intersecting at <math>O</math>, <math>BO=4</math>, <math>OD = 6</math>, <math>AO=8</math>, <math>OC=3</math>, and <math>AB=6</math>. The length of <math>AD</math> is:
+
<math>\textbf{(A)}\ 9\qquad \textbf{(B)}\ 10\qquad \textbf{(C)}\ 6\sqrt{3}\qquad \textbf{(D)}\ 8\sqrt{2}\qquad \textbf{(E)}\ \sqrt{166}</math>
  
<math>\textbf{(A)}\ 9\qquad
+
<math>\sqrt{166}</math>
\textbf{(B)}\ 10\qquad
 
\textbf{(C)}\ 6\sqrt{3}\qquad
 
\textbf{(D)}\ 8\sqrt{2}\qquad
 
\textbf{(E)}\ \sqrt{166}</math>
 
 
 
== Solution ==
 
<math>\fbox{E}</math>
 
  
 +
After drawing the diagram, we see that we actually have a lot of lengths to work with. Considering triangle ABD, we know values of <math>AB, BD(BD = BO + OD)</math>, but we want to find the value of AD. We can apply stewart's theorem now, letting <math>m = 4, n = 6, AD = X, AB = 6</math>, and we have <math>10 \cdot 6 \cdot 4 + 8 \cdot 8 \cdot 10 = x^2 + 36 \cdot 6</math>, and we see that <math>x = \sqrt{166}</math>, <math>\boxed{E \sqrt{166}}</math>
 
== See also ==
 
== See also ==
 
{{AHSME box|year=1967|num-b=31|num-a=33}}   
 
{{AHSME box|year=1967|num-b=31|num-a=33}}   

Revision as of 18:18, 10 September 2020

In quadrilateral $ABCD$ with diagonals $AC$ and $BD$, intersecting at $O$, $BO=4$, $OD = 6$, $AO=8$, $OC=3$, and $AB=6$. The length of $AD$ is: $\textbf{(A)}\ 9\qquad \textbf{(B)}\ 10\qquad \textbf{(C)}\ 6\sqrt{3}\qquad \textbf{(D)}\ 8\sqrt{2}\qquad \textbf{(E)}\ \sqrt{166}$

$\sqrt{166}$

After drawing the diagram, we see that we actually have a lot of lengths to work with. Considering triangle ABD, we know values of $AB, BD(BD = BO + OD)$, but we want to find the value of AD. We can apply stewart's theorem now, letting $m = 4, n = 6, AD = X, AB = 6$, and we have $10 \cdot 6 \cdot 4 + 8 \cdot 8 \cdot 10 = x^2 + 36 \cdot 6$, and we see that $x = \sqrt{166}$, $\boxed{E \sqrt{166}}$

See also

1967 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 31
Followed by
Problem 33
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png