1968 AHSME Problems/Problem 35

Revision as of 18:05, 27 December 2014 by Hnkevin42 (talk | contribs) (Solution)

Problem

[asy] draw(circle((0,0),10),black+linewidth(.75)); fill((-11,0)--(11,0)--(11,-11)--(-11,-11)--cycle,white); draw((-10,0)--(10,0),black+linewidth(.75)); draw((-sqrt(96),2)--(sqrt(96),2),black+linewidth(.75)); draw((-8,6)--(8,6),black+linewidth(.75)); draw((0,0)--(0,10),black+linewidth(.75)); draw((-8,6)--(-8,2),black+linewidth(.75)); draw((8,6)--(8,2),black+linewidth(.75)); dot((0,0)); MP("O",(0,0),S);MP("a",(5,0),S); MP("J",(0,10),N);MP("D",(sqrt(96),2),E);MP("C",(-sqrt(96),2),W); MP("F",(8,6),E);MP("E",(-8,6),W);MP("G",(0,2),NE); MP("H",(0,6),NE);MP("L",(-8,2),S);MP("M",(8,2),S); [/asy] In this diagram the center of the circle is $O$, the radius is $a$ inches, chord $EF$ is parallel to chord $CD$. $O$,$G$,$H$,$J$ are collinear, and $G$ is the midpoint of $CD$. Let $K$ (sq. in.) represent the area of trapezoid $CDFE$ and let $R$ (sq. in.) represent the area of rectangle $ELMF.$ Then, as $CD$ and $EF$ are translated upward so that $OG$ increases toward the value $a$, while $JH$ always equals $HG$, the ratio $K:R$ becomes arbitrarily close to:

$\text{(A)} 0\quad\text{(B)} 1\quad\text{(C)} \sqrt{2}\quad\text{(D)} \frac{1}{\sqrt{2}}+\frac{1}{2}\quad\text{(E)} \frac{1}{\sqrt{2}}+1$

Solution

Let $OG = a - 2h$, where $h = JH = HG$. Since the areas of rectangle $EHGL$ and trapezoid $EHGC$ are both half of rectangle $CDFE$ and $EFDC$, respectively, the ratios between their areas will remain the same, so let us consider rectangle $EHGL$ and trapezoid $EHGC$. Draw radii $OC$ and $OE$, both of which obviously have length $a$. By the Pythagorean theorem, the length of $EH$ is $\sqrt{a^2 - (OG + h)^2}$, and the length of $CG$ is $\sqrt{a^2 - OG^2}$. It follows that the area of rectangle $EHGL$ is $EH * HG = h\sqrt{a^2 - (OG + h)^2}$ while the area of trapezoid $EHGC$ is $\frac{HG}{2}(EH + CG)$ $= \frac{h}{2}(\sqrt{a^2 - (OG + h)^2} + \sqrt{a^2 - OG^2})$. Now, we want to find the limit, as $OG$ approaches $a$, of $\frac{K}{R}$. Note that this is equivalent to finding the same limit as $h$ approaches $0$. Substituting $a - 2h$ into $OG$ yields that trapezoid $EHGC$ has area $\frac{h}{2}(\sqrt{a^2 - (a - 2h + h)^2} + \sqrt{a^2 - (a - 2h)^2}) =$ $\frac{h}{2}(\sqrt{2ah - h^2} + \sqrt{(4ah - 4h^2})$ and that rectangle $EHGL$ has area $h\sqrt{a^2 - (a - 2h + h)^2} = h(\sqrt{2ah - h^2})$. Our answer thus becomes \[\lim_{h\rightarrow 0}\frac{\frac{h}{2}(\sqrt{2ah - h^2} + \sqrt{(4ah - 4h^2})}{h(\sqrt{2ah - h^2})} = \frac{1}{2} * \frac{\sqrt{h}(\sqrt{2a - h} + 2\sqrt{a - h})}{\sqrt{h}(\sqrt{2a - h})}\] \[\implies \frac{1}{2} * \frac{\sqrt{2a} + 2\sqrt{a}}{\sqrt{2a}} = \frac{1}{2}(1 + \frac{2}{\sqrt{2}}) = \frac{1}{2}+\frac{1}{\sqrt{2}} \textbf{  (D)}.\]

See also

1968 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 34
Followed by
Problem 35
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png