Difference between revisions of "1969 IMO Problems/Problem 2"

(Created page with "Let <math>a_1, a_2,\cdots, a_n</math> be real constants, <math>x</math> a real variable, and <cmath>f(x)=\cos(a_1+x)+\frac{1}{2}\cos(a_2+x)+\frac{1}{4}\cos(a_3+x)+\cdots+\frac...")
 
(4 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 +
==Problem==
 
Let <math>a_1, a_2,\cdots, a_n</math> be real constants, <math>x</math> a real variable, and <cmath>f(x)=\cos(a_1+x)+\frac{1}{2}\cos(a_2+x)+\frac{1}{4}\cos(a_3+x)+\cdots+\frac{1}{2^{n-1}}\cos(a_n+x).</cmath> Given that <math>f(x_1)=f(x_2)=0,</math> prove that <math>x_2-x_1=m\pi</math> for some integer <math>m.</math>
 
Let <math>a_1, a_2,\cdots, a_n</math> be real constants, <math>x</math> a real variable, and <cmath>f(x)=\cos(a_1+x)+\frac{1}{2}\cos(a_2+x)+\frac{1}{4}\cos(a_3+x)+\cdots+\frac{1}{2^{n-1}}\cos(a_n+x).</cmath> Given that <math>f(x_1)=f(x_2)=0,</math> prove that <math>x_2-x_1=m\pi</math> for some integer <math>m.</math>
----
+
 
 +
==Solution==
 +
Because the period of <math>\cos(x)</math> is <math>2\pi</math>, the period of <math>f(x)</math> is also <math>2\pi</math>.
 +
<cmath>f(x_1)=f(x_2)=f(x_1+x_2-x_1)</cmath>
 +
We can get <math>x_2-x_1 = 2k\pi</math> for <math>k\in N^*</math>. Thus, <math>x_2-x_1=m\pi</math> for some integer <math>m.</math>
 +
 
 +
==See Also==
 +
 
 +
{{IMO box|year=1969|num-b=1|num-a=3}}

Revision as of 13:36, 29 January 2021

Problem

Let $a_1, a_2,\cdots, a_n$ be real constants, $x$ a real variable, and \[f(x)=\cos(a_1+x)+\frac{1}{2}\cos(a_2+x)+\frac{1}{4}\cos(a_3+x)+\cdots+\frac{1}{2^{n-1}}\cos(a_n+x).\] Given that $f(x_1)=f(x_2)=0,$ prove that $x_2-x_1=m\pi$ for some integer $m.$

Solution

Because the period of $\cos(x)$ is $2\pi$, the period of $f(x)$ is also $2\pi$. \[f(x_1)=f(x_2)=f(x_1+x_2-x_1)\] We can get $x_2-x_1 = 2k\pi$ for $k\in N^*$. Thus, $x_2-x_1=m\pi$ for some integer $m.$

See Also

1969 IMO (Problems) • Resources
Preceded by
Problem 1
1 2 3 4 5 6 Followed by
Problem 3
All IMO Problems and Solutions