# Difference between revisions of "1971 AHSME Problems/Problem 29"

(→Solution) |
(→Solution) |
||

Line 12: | Line 12: | ||

==Solution== | ==Solution== | ||

− | The product of the sequence <math>10^{\dfrac{1}{11}}, 10^{\dfrac{2}{11}}, 10^{\dfrac{3}{11}}, 10^{\dfrac{4}{11}},\dots , 10^{\dfrac{n}{11}}</math> is equal to <math>10^{\dfrac{1}{11}+\frac{2}{11}\dots\frac{n}{11}}</math> since we are looking for the smallest value <math>n</math> that will create <math>100,000</math>, or <math>10^5</math>, we set up the equation <math>10^{\dfrac{1}{11}+\frac{2}{11}\dots\frac{n}{11}}=10^5</math>, which simplified to <math>\dfrac{1}{11}+\frac{2}{11}\dots\frac{n}{11}=5</math>, or <math>1+2+3\dots n=55</math> This can be converted to <math>\frac{n(1+n)}{2}=55</math> This simplified to the quadratic <math>n^2+n-110=0</math> Or <math>(n+11)(n-10)=0</math> So <math>n=-11</math> or <math>10</math> Since only positive values of <math>n</math> work, our answer is | + | The product of the sequence <math>10^{\dfrac{1}{11}}, 10^{\dfrac{2}{11}}, 10^{\dfrac{3}{11}}, 10^{\dfrac{4}{11}},\dots , 10^{\dfrac{n}{11}}</math> is equal to <math>10^{\dfrac{1}{11}+\frac{2}{11}\dots\frac{n}{11}}</math> since we are looking for the smallest value <math>n</math> that will create <math>100,000</math>, or <math>10^5</math>, we set up the equation <math>10^{\dfrac{1}{11}+\frac{2}{11}\dots\frac{n}{11}}=10^5</math>, which simplified to <math>\dfrac{1}{11}+\frac{2}{11}\dots\frac{n}{11}=5</math>, or <math>1+2+3\dots n=55</math> This can be converted to <math>\frac{n(1+n)}{2}=55</math> This simplified to the quadratic <math>n^2+n-110=0</math> Or <math>(n+11)(n-10)=0</math> So <math>n=-11</math> or <math>10</math> Since only positive values of <math>n</math> work, our answer is <math>\boxed{\textbf{(D) }10}.</math> |

## Revision as of 18:20, 22 August 2019

## Problem 29

Given the progression . The least positive integer such that the product of the first terms of the progression exceeds is

## Solution

The product of the sequence is equal to since we are looking for the smallest value that will create , or , we set up the equation , which simplified to , or This can be converted to This simplified to the quadratic Or So or Since only positive values of work, our answer is