1971 Canadian MO Problems/Problem 6

Revision as of 20:18, 10 January 2020 by Nafer (talk | contribs) (Solution 2)

Problem

Show that, for all integers $n$, $n^2+2n+12$ is not a multiple of $121$.

Solutions

Solution

Notice $n^{2} + 2n + 12 = (n+1)^{2} + 11$. For this expression to be equal to a multiple of 121, $(n+1)^{2} + 11$ would have to equal a number in the form $121x$. Now we have the equation $(n+1)^{2} + 11 = 121x$. Subtracting $11$ from both sides and then factoring out $11$ on the right hand side results in $(n+1)^{2} = 11(11x - 1)$. Now we can say $(n+1) = 11$ and $(n+1) = 11x - 1$. Solving the first equation results in $n=10$. Plugging in $n=10$ in the second equation and solving for $x$, $x = 12/11$. Since $12/11$ *$121$ is clearly not a multiple of 121, $n^{2} + 2n + 12$ can never be a multiple of 121.

Solution 2

Assume that $n^2+2n+12=121k$ for some integer $k$ then \[n^2+2n+(12-121k)=0\] \begin{align*} x&=\frac{-2\pm\sqrt{4-4(12-121k)}}{2} \\ &=\frac{-2\pm2\sqrt{484k-44}}{2} \\ &=\sqrt{11(11k-1)} \\ \end{align*} By the assumption that $n$ is an integer, $11k-1$ must has a factor of $11$, which is impossible, contradiction.

~ Nafer

See Also

1971 Canadian MO (Problems)
Preceded by
Problem 5
1 2 3 4 5 6 7 8 Followed by
Problem 7