Difference between revisions of "1971 IMO Problems/Problem 1"

Line 9: Line 9:
==See Also==
==See Also==
{{IMO box|year=1963|num-b=First Question|num-a=2}}
{{IMO box|year=1971|before=First Question|num-a=2}}

Revision as of 15:03, 17 February 2018


Prove that the following assertion is true for $n=3$ and $n=5$, and that it is false for every other natural number $n>2:$

If $a_1, a_2,\cdots, a_n$ are arbitrary real numbers, then $(a_1-a_2)(a_1-a_3)\cdots (a_1-a_n)+(a_2-a_1)(a_2-a_3)\cdots (a_2-a_n)+\cdots+(a_n-a_1)(a_n-a_2)\cdots (a_n-a_{n-1})\ge 0.$


This problem needs a solution. If you have a solution for it, please help us out by adding it.

See Also

1971 IMO (Problems) • Resources
Preceded by
First Question
1 2 3 4 5 6 Followed by
Problem 2
All IMO Problems and Solutions
Invalid username
Login to AoPS