Difference between revisions of "1973 USAMO Problems/Problem 3"

m (Solution)
m (Solution)
Line 25: Line 25:
 
\frac{ n^2+n }{ 4n^2 - 2n }
 
\frac{ n^2+n }{ 4n^2 - 2n }
 
=
 
=
\boxed{frac{n+1}{4n-2}}
+
\boxed{\frac{n+1}{4n-2}}
 
</cmath>
 
</cmath>
  

Revision as of 15:48, 2 April 2010

Problem

Three distinct vertices are chosen at random from the vertices of a given regular polygon of $(2n+1)$ sides. If all such choices are equally likely, what is the probability that the center of the given polygon lies in the interior of the triangle determined by the three chosen random points?

Solution

There are $\binom{2n+1}{3}$ ways how to pick the three vertices. We will now count the ways where the interior does NOT contain the center. These are obviously exactly the ways where all three picked vertices lie among some $n+1$ consecutive vertices of the polygon. We will count these as follows: We will go clockwise around the polygon. We can pick the first vertex arbitrarily ($2n+1$ possibilities). Once we pick it, we have to pick $2$ out of the next $n$ vertices ($\binom{n}{2}$ possibilities).

Then the probability that our triangle does NOT contain the center is \[p = \frac{ (2n+1){\binom{n}{2}} }{ {\binom{2n+1}{3} } } = \frac{ (1/2)(2n+1)(n)(n-1) }{ (1/6)(2n+1)(2n)(2n-1) } =  \frac{ 3(n)(n-1) }{ (2n)(2n-1) }\]

And then the probability we seek is \[1-p =  \frac{ (2n)(2n-1) - 3(n)(n-1) }{ (2n)(2n-1) } = \frac{ n^2+n }{ 4n^2 - 2n } = \boxed{\frac{n+1}{4n-2}}\]

See also

1973 USAMO (ProblemsResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5
All USAMO Problems and Solutions
Invalid username
Login to AoPS