Difference between revisions of "1974 AHSME Problems/Problem 10"

m (added category)
(Problem)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
 
==Problem==
 
==Problem==
What is the smallest integral value of <math> k </math> such that  
+
<!-- don't remove the following tag, for PoTW on the Wiki front page--><onlyinclude>What is the smallest integral value of <math> k </math> such that  
 
 
 
<cmath> 2x(kx-4)-x^2+6=0 </cmath>
 
<cmath> 2x(kx-4)-x^2+6=0 </cmath>
 
+
has no real roots?<!-- don't remove the following tag, for PoTW on the Wiki front page--></onlyinclude>
has no real roots?
 
  
 
<math> \mathrm{(A)\ } -1 \qquad \mathrm{(B) \ }2 \qquad \mathrm{(C) \  } 3 \qquad \mathrm{(D) \  } 4 \qquad \mathrm{(E) \  }5  </math>
 
<math> \mathrm{(A)\ } -1 \qquad \mathrm{(B) \ }2 \qquad \mathrm{(C) \  } 3 \qquad \mathrm{(D) \  } 4 \qquad \mathrm{(E) \  }5  </math>
Line 14: Line 12:
 
{{AHSME box|year=1974|num-b=9|num-a=11}}
 
{{AHSME box|year=1974|num-b=9|num-a=11}}
 
[[Category:Introductory Algebra Problems]]
 
[[Category:Introductory Algebra Problems]]
 +
{{MAA Notice}}

Latest revision as of 17:14, 18 November 2015

Problem

What is the smallest integral value of $k$ such that \[2x(kx-4)-x^2+6=0\] has no real roots?

$\mathrm{(A)\ } -1 \qquad \mathrm{(B) \ }2 \qquad \mathrm{(C) \  } 3 \qquad \mathrm{(D) \  } 4 \qquad \mathrm{(E) \  }5$

Solution

Expanding, we have $2kx^2-8x-x^2+6=0$, or $(2k-1)x^2-8x+6=0$. For this quadratic not to have real roots, it must have a negative discriminant. Therefore, $(-8)^2-4(2k-1)(6)<0\implies 64-48k+24<0\implies k>\frac{11}{6}$. From here, we can easily see that the smallest integral value of $k$ is $2, \boxed{\text{B}}$.

See Also

1974 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png