1975 AHSME Problems/Problem 27

Revision as of 16:09, 8 June 2017 by Henry wang (talk | contribs) (Created page with "If <math>p</math> is a root of <math>x^3 - x^2 + x - 2 = 0</math>, then <math>p^3 - p^2 + p - 2 = 0</math>, or <cmath>p^3 = p^2 - p + 2.</cmath> Similarly, <math>q^3 = q^2 - q...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

If $p$ is a root of $x^3 - x^2 + x - 2 = 0$, then $p^3 - p^2 + p - 2 = 0$, or \[p^3 = p^2 - p + 2.\] Similarly, $q^3 = q^2 - q + 2$, and $r^3 = r^2 - r + 2$, so \[p^3 + q^3 + r^3 = (p^2 + q^2 + r^2) - (p + q + r) + 6.\]

By Vieta's formulas, $p + q + r = 1$, $pq + pr + qr = 1$, and $pqr = 2$. Squaring the equation $p + q + r = 1$, we get \[p^2 + q^2 + r^2 + 2pq + 2pr + 2qr = 1.\] Subtracting $2pq + 2pr + 2qr = 2$, we get \[p^2 + q^2 + r^2 = -1.\]

Therefore, $p^3 + q^3 + r^3 = (p^2 + q^2 + r^2) - (p + q + r) + 6 = (-1) - 1  + 6 = \boxed{4}$. The answer is (E).