Difference between revisions of "1975 Canadian MO Problems/Problem 4"
m (→Solution) |
m (typo) |
||
Line 62: | Line 62: | ||
− | The number we're searching for | + | The number we're searching for is the golden ratio. |
{{Old CanadaMO box|num-b = 3|num-a=5|year=1975}} | {{Old CanadaMO box|num-b = 3|num-a=5|year=1975}} |
Latest revision as of 11:15, 24 January 2018
Problem 4
For a positive number such as , is referred to as the integral part of the number and as the decimal part. Find a positive number such that its decimal part, its integral part, and the number itself form a geometric progression.
Solution
Let be the integer part and be the decimal part, thus, we have the G.P.
So,
There we have a quadratic equation. We must isolate or .
If the number must be positive, thus we'll consider only the solution
As is the decimal part, then it must be lower than 1
This is the golden ratio and it's approximately .
As must be an integer, thus . Therefore
To find our number we must sum , so
The number we're searching for is the golden ratio.
1975 Canadian MO (Problems) | ||
Preceded by Problem 3 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • | Followed by Problem 5 |