1976 AHSME Problems/Problem 21

Revision as of 20:54, 19 July 2021 by Jiang147369 (talk | contribs) (Created page with "== Problem 21 == What is the smallest positive odd integer <math>n</math> such that the product <math>2^{1/7}2^{3/7}\cdots2^{(2n+1)/7}</math> is greater than <math>1000</math...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem 21

What is the smallest positive odd integer $n$ such that the product $2^{1/7}2^{3/7}\cdots2^{(2n+1)/7}$ is greater than $1000$? (In the product the denominators of the exponents are all sevens, and the numerators are the successive odd integers from $1$ to $2n+1$.)

$\textbf{(A) }7\qquad \textbf{(B) }9\qquad \textbf{(C) }11\qquad \textbf{(D) }17\qquad  \textbf{(E) }19$


Solution

Combine the terms in the product to get $2^{\frac{1+3+5+ \dots +(2n-1)+(2n+1)}{7}}$.

The exponent can be simplified to \[\frac{1+3+5+ \dots +(2n-1)+(2n+1)}{7} \Rightarrow \frac{\frac{n(1+(2n+1))}{2}}{7} \Rightarrow \frac{n^2}{7}.\]

We want this inequality to be true with the smallest positive odd integer value of $n$: \[2^{\frac{n^2}{7}} > 1000.\]

Now, let's test the answer choices. For $n=7$, we have $2^{49/7}=2^{7}<1000$. For $n=9$, we have $2^{81/7}>2^{10}>1000$.


So our answer is $\boxed{\textbf{(B) }9}$. ~jiang147369


See Also

1976 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png