1977 AHSME Problems/Problem 13

Revision as of 13:15, 21 November 2016 by E power pi times i (talk | contribs) (Solution)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem 13

If $a_1,a_2,a_3,\dots$ is a sequence of positive numbers such that $a_{n+2}=a_na_{n+1}$ for all positive integers $n$, then the sequence $a_1,a_2,a_3,\dots$ is a geometric progression

$\textbf{(A) }\text{for all positive values of }a_1\text{ and }a_2\qquad\\ \textbf{(B) }\text{if and only if }a_1=a_2\qquad\\ \textbf{(C) }\text{if and only if }a_1=1\qquad\\ \textbf{(D) }\text{if and only if }a_2=1\qquad\\ \textbf{(E) }\text{if and only if }a_1=a_2=1$


Solution

Solution by e_power_pi_times_i

The first few terms are $a_1,a_2,a_1a_2,a_1a_2^2,a_1^2a_2^3,\dots$ . If this is a geometric progression, $\dfrac{a_2}{a_1} = a_1 = a_2 = a_1a_2$. $a_1=0,1$, $a_2=0,1$. Since this is a sequence of positive integers, then the answer must be $\boxed{\textbf{(E) }\text{if and only if }a_1=a_2=1 }$.