Difference between revisions of "1977 Canadian MO Problems/Problem 1"

(See also)
(Solution 2)
(8 intermediate revisions by 5 users not shown)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
 +
If <math>f(x)=x^2+x,</math> prove that the equation <math>4f(a)=f(b)</math> has no solutions in positive integers <math>a</math> and <math>b.</math>
  
If <math>\displaystyle f(x)=x^2+x,</math> prove that the equation <math>\displaystyle 4f(a)=f(b)</math> has no solutions in positive integers <math>\displaystyle a</math> and <math>\displaystyle b.</math>
+
== Solution ==
 +
Directly plugging <math>a</math> and <math>b</math> into the function, <math>4a^2+4a=b^2+b.</math> We now have a quadratic in <math>a.</math>
  
 +
Applying the quadratic formula, <math>a=\frac{-1\pm \sqrt{b^2+b+1}}{2}. </math>
  
== Solution ==
+
In order for both <math>a</math> and <math>b</math> to be integers, the [[discriminant]] must be a [[perfect square]].  However, since <math>b^2< b^2+b+1 <(b+1)^2,</math> the quantity <math>b^2+b+1</math> cannot be a perfect square when <math>b</math> is an integer. Hence, when <math>b</math> is a positive integer, <math>a</math> cannot be.
Directly plugging <math>\displaystyle a</math> and <math>\displaystyle b</math> into the function, <math>\displaystyle 4a^2+4a=b^2+b.</math> We now have a quadratic in <math>\displaystyle a.</math>
 
  
Applying the quadratic formula, <math> \displaystyle a=\frac{-1\pm \sqrt{b^2+b+1}}{2}. </math>
+
==Solution 2==
 +
Suppose there exist positive integral <math>a</math> and <math>b</math> such that <math>4f(a) = f(b)</math>.
  
In order for both <math>\displaystyle a</math> and <math>\displaystyle b</math> to be integers, the [[discriminant]] must be a [[perfect square]]. However, since <math>\displaystyle b^2< b^2+b+1 <(b+1)^2,</math> the quantity <math>\displaystyle b^2+b+1</math> cannot be a perfect square when <math>\displaystyle b</math> is an integer. Hence, when <math>\displaystyle b</math> is a positive integer, <math>\displaystyle a</math> cannot be.
+
Thus, <math>4a^2 + 4a = b^2 + b</math>, or <math>(2a+1)^2 = b^2 + b + 1</math>. Then in order for the original equation to be true, <math>b^{2} + b + 1</math> would have to be a perfect square. Completing the square of <math>b^{2} + b + 1</math> results in <math>(b+1/2)^{2} + 3/4</math>. Thus, <math>b^{2} + b + 1</math> is not a perfect square and thus there is no <math>b</math> to satisfy <math>4f(a) = f(b)</math>
  
 +
==Alternate Solutions?==
 
{{alternate solutions}}
 
{{alternate solutions}}
  
 
== See also ==
 
== See also ==
* [[1977 Canadian MO Problems]]
+
{{Old CanadaMO box|before=First question|num-a=2|year=1977}}
* [[1977 Canadian MO]]
 
  
[[Category:Olympiad Algebra Problems]]
+
[[Category:Intermediate Algebra Problems]]

Revision as of 00:58, 10 August 2016

Problem

If $f(x)=x^2+x,$ prove that the equation $4f(a)=f(b)$ has no solutions in positive integers $a$ and $b.$

Solution

Directly plugging $a$ and $b$ into the function, $4a^2+4a=b^2+b.$ We now have a quadratic in $a.$

Applying the quadratic formula, $a=\frac{-1\pm \sqrt{b^2+b+1}}{2}.$

In order for both $a$ and $b$ to be integers, the discriminant must be a perfect square. However, since $b^2< b^2+b+1 <(b+1)^2,$ the quantity $b^2+b+1$ cannot be a perfect square when $b$ is an integer. Hence, when $b$ is a positive integer, $a$ cannot be.

Solution 2

Suppose there exist positive integral $a$ and $b$ such that $4f(a) = f(b)$.

Thus, $4a^2 + 4a = b^2 + b$, or $(2a+1)^2 = b^2 + b + 1$. Then in order for the original equation to be true, $b^{2} + b + 1$ would have to be a perfect square. Completing the square of $b^{2} + b + 1$ results in $(b+1/2)^{2} + 3/4$. Thus, $b^{2} + b + 1$ is not a perfect square and thus there is no $b$ to satisfy $4f(a) = f(b)$

Alternate Solutions?

Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.

See also

1977 Canadian MO (Problems)
Preceded by
First question
1 2 3 4 5 6 7 8 Followed by
Problem 2