Difference between revisions of "1978 AHSME Problems/Problem 11"

(Created page with "The circle <math>x^2 + y^2 = r</math> has center <math>(0,0)</math> and radius <math>\sqrt{r}</math>. Therefore, if the line <math>x + y = r</math> is tangent to the circle <m...")
 
 
Line 1: Line 1:
 +
== Problem 11 ==
 +
 +
If <math>r</math> is positive and the line whose equation is <math>x + y = r</math> is tangent to the circle whose equation is <math>x^2 + y ^2 = r</math>, then <math>r</math> equals
 +
 +
<math>\textbf{(A) }\frac{1}{2}\qquad
 +
\textbf{(B) }1\qquad
 +
\textbf{(C) }2\qquad
 +
\textbf{(D) }\sqrt{2}\qquad
 +
\textbf{(E) }2\sqrt{2}    </math>
 +
 +
== Solution ==
 
The circle <math>x^2 + y^2 = r</math> has center <math>(0,0)</math> and radius <math>\sqrt{r}</math>. Therefore, if the line <math>x + y = r</math> is tangent to the circle <math>x^2 + y^2 = r</math>, then the distance between <math>(0,0)</math> and the line <math>x + y = r</math> is <math>\sqrt{r}</math>.
 
The circle <math>x^2 + y^2 = r</math> has center <math>(0,0)</math> and radius <math>\sqrt{r}</math>. Therefore, if the line <math>x + y = r</math> is tangent to the circle <math>x^2 + y^2 = r</math>, then the distance between <math>(0,0)</math> and the line <math>x + y = r</math> is <math>\sqrt{r}</math>.
  
Line 6: Line 17:
 
<cmath>\frac{r}{\sqrt{2}} = \sqrt{r}.</cmath>
 
<cmath>\frac{r}{\sqrt{2}} = \sqrt{r}.</cmath>
 
Then <math>r = \sqrt{r} \cdot \sqrt{2}</math>, so <math>\sqrt{r} = \sqrt{2}</math>, which means <math>r = \boxed{2}</math> or (B), <math>2</math>.
 
Then <math>r = \sqrt{r} \cdot \sqrt{2}</math>, so <math>\sqrt{r} = \sqrt{2}</math>, which means <math>r = \boxed{2}</math> or (B), <math>2</math>.
 +
 +
==See Also==
 +
{{AHSME box|year=1978|num-b=10|num-a=12}}
 +
{{MAA Notice}}

Latest revision as of 12:26, 13 February 2021

Problem 11

If $r$ is positive and the line whose equation is $x + y = r$ is tangent to the circle whose equation is $x^2 + y ^2 = r$, then $r$ equals

$\textbf{(A) }\frac{1}{2}\qquad \textbf{(B) }1\qquad \textbf{(C) }2\qquad \textbf{(D) }\sqrt{2}\qquad  \textbf{(E) }2\sqrt{2}$

Solution

The circle $x^2 + y^2 = r$ has center $(0,0)$ and radius $\sqrt{r}$. Therefore, if the line $x + y = r$ is tangent to the circle $x^2 + y^2 = r$, then the distance between $(0,0)$ and the line $x + y = r$ is $\sqrt{r}$.

The distance between $(0,0)$ and the line $x + y = r$ is \[\frac{|0 + 0 - r|}{\sqrt{1^2 + 1^2}} = \frac{r}{\sqrt{2}}.\] Hence, \[\frac{r}{\sqrt{2}} = \sqrt{r}.\] Then $r = \sqrt{r} \cdot \sqrt{2}$, so $\sqrt{r} = \sqrt{2}$, which means $r = \boxed{2}$ or (B), $2$.

See Also

1978 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png