Difference between revisions of "1980 AHSME Problems/Problem 5"

 
Line 24: Line 24:
 
== See also ==
 
== See also ==
 
{{AHSME box|year=1980|num-b=4|num-a=6}}
 
{{AHSME box|year=1980|num-b=4|num-a=6}}
 +
{{MAA Notice}}

Latest revision as of 12:47, 5 July 2013

Problem

If $AB$ and $CD$ are perpendicular diameters of circle $Q$, $P$ in $\overline{AQ}$, and $\measuredangle QPC = 60^\circ$, then the length of $PQ$ divided by the length of $AQ$ is

[asy] defaultpen(linewidth(0.7)+fontsize(10)); pair A=(-1,0), B=(1,0), C=(0,1), D=(0,-1), Q=origin, P=(-0.5,0); draw(P--C--D^^A--B^^Circle(Q,1)); label("$A$", A, W); label("$B$", B, E); label("$C$", C, N); label("$D$", D, S); label("$P$", P, S); label("$Q$", Q, SE); label("$60^\circ$", P+0.0.5*dir(30), dir(30));[/asy]

$\text{(A)} \ \frac{\sqrt{3}}{2} \qquad \text{(B)} \ \frac{\sqrt{3}}{3} \qquad \text{(C)} \ \frac{\sqrt{2}}{2} \qquad \text{(D)} \ \frac12 \qquad \text{(E)} \ \frac23$

Solution

We find that $m\angle PCQ=30^\circ$. Because it is a $30^\circ-60^\circ-90^\circ$ right triangle, we can let $PQ=x$, so $CQ=AQ=x\sqrt{3}$. Thus, $\frac{PQ}{AQ}=\frac{x}{x\sqrt{3}}=\frac{\sqrt{3}}{3}\Rightarrow\boxed{(B)}$.


See also

1980 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png