Difference between revisions of "1981 AHSME Problems"

(Created page with "==Problem 1== If <math>\sqrt{x+2}=2</math>, then <math>(x+2)^{2}</math> equals <math> \textbf{(A)}\ \sqrt{2}\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 4\qquad\textbf{(D)}\ 8\qquad...")
 
(Fixed a conflict between the problem text here and in the solution. The problem written here used the identity f(x) + f(1/x) = x, but if we let y = 1/x, then f(1/y) + f(y) = 1/y for all nonzero real y, so we would arrive at the contradiction that x=1/x.)
 
(10 intermediate revisions by 7 users not shown)
Line 1: Line 1:
 +
{{AHSME Problems
 +
|year = 1981
 +
}}
 
==Problem 1==
 
==Problem 1==
 
If <math>\sqrt{x+2}=2</math>, then <math>(x+2)^{2}</math> equals
 
If <math>\sqrt{x+2}=2</math>, then <math>(x+2)^{2}</math> equals
Line 94: Line 97:
 
If <math>p</math>, <math>q</math>, and <math>M</math> are positive numbers and <math>q<100</math>, then the number obtained by increasing <math>M</math> by <math>p\%</math> and decreasing the result by <math>q\%</math> exceeds <math>M</math> if and only if
 
If <math>p</math>, <math>q</math>, and <math>M</math> are positive numbers and <math>q<100</math>, then the number obtained by increasing <math>M</math> by <math>p\%</math> and decreasing the result by <math>q\%</math> exceeds <math>M</math> if and only if
  
<math> \textbf{(A)}\ p>q \qquad\textbf{(B)}\ p>\dfrac{q}{100-q}\qquad\textbf{(C)}\ p>\dfrac{q}{1-q}\qquad \textbf{(D)}\ p>\dfrac{100q}{100+q}\qquad \\ \textbf{(E)}\ p>\dfrac{100q}{100-q} </math>
+
<math> \textbf{(A)}\ p>q \qquad\textbf{(B)}\ p>\dfrac{q}{100-q}\qquad\textbf{(C)}\ p>\dfrac{q}{1-q}\qquad \textbf{(D)}\ p>\dfrac{100q}{100+q}\qquad\textbf{(E)}\ p>\dfrac{100q}{100-q} </math>
  
 
[[1981 AHSME Problems/Problem 12|Solution]]
 
[[1981 AHSME Problems/Problem 12|Solution]]
Line 129: Line 132:
  
 
==Problem 17==
 
==Problem 17==
The function <math>f</math> is not defined for <math>x=0</math>, but, for all non-zero real numbers <math>x</math>, <math> f(x)+f\left(\dfrac{1}x\right)=x </math>. The equation <math> f(x)=f(-x) </math> is satisfied by
+
The function <math>f</math> is not defined for <math>x=0</math>, but, for all non-zero real numbers <math>x</math>, <math> f(x)+2f\left(\dfrac{1}x\right)=3x </math>. The equation <math> f(x)=f(-x) </math> is satisfied by
  
 
<math> \textbf{(A)}\ \text{exactly one real number} \qquad \textbf{(B)}\ \text{exactly two real numbers} \qquad\textbf{(C)}\ \text{no real numbers}\qquad \\ \textbf{(D)}\ \text{infinitely many, but not all, non-zero real numbers} \qquad\textbf{(E)}\ \text{all non-zero real numbers} </math>
 
<math> \textbf{(A)}\ \text{exactly one real number} \qquad \textbf{(B)}\ \text{exactly two real numbers} \qquad\textbf{(C)}\ \text{no real numbers}\qquad \\ \textbf{(D)}\ \text{infinitely many, but not all, non-zero real numbers} \qquad\textbf{(E)}\ \text{all non-zero real numbers} </math>
Line 160: Line 163:
 
label("$M$", M, dir(point--M));
 
label("$M$", M, dir(point--M));
 
label("$N$", N, dir(30));
 
label("$N$", N, dir(30));
label(rotate(A--C)*"$19$", A--C, dir(A--C)*dir(90));
+
label(rotate(angle(dir(A--C)))*"$19$", A--C, dir(A--C)*dir(90));
label(rotate(A--B)*"$14$", A--B, dir(A--B)*dir(90));
+
label(rotate(angle(dir(A--B)))*"$14$", A--B, dir(A--B)*dir(90));
 
</asy>
 
</asy>
  
Line 197: Line 200:
 
draw(anglemark(B,G,D,12));
 
draw(anglemark(B,G,D,12));
 
draw(anglemark(B,G,D,16));
 
draw(anglemark(B,G,D,16));
 +
label(D,"$D$",SE);
 
</asy>
 
</asy>
  
Line 211: Line 215:
  
 
==Problem 22==
 
==Problem 22==
How many lines in a three dimensional rectangular coordiante system pass through four distinct points of the form <math>(i,j,k)</math>, where <math>i</math>, <math>j</math>, and <math>k</math> are positive integers not exceeding four?
+
How many lines in a three dimensional rectangular coordinate system pass through four distinct points of the form <math>(i,j,k)</math>, where <math>i</math>, <math>j</math>, and <math>k</math> are positive integers not exceeding four?
  
 
<math> \textbf{(A)}\ 60\qquad\textbf{(B)}\ 64\qquad\textbf{(C)}\ 72\qquad\textbf{(D)}\ 76\qquad\textbf{(E)}\ 100 </math>
 
<math> \textbf{(A)}\ 60\qquad\textbf{(B)}\ 64\qquad\textbf{(C)}\ 72\qquad\textbf{(D)}\ 76\qquad\textbf{(E)}\ 100 </math>
Line 247: Line 251:
 
If <math> \theta</math> is a constant such that <math> 0 < \theta < \pi</math> and <math> x + \dfrac{1}{x} = 2\cos{\theta}</math>, then for each positive integer <math> n</math>, <math> x^n + \dfrac{1}{x^n}</math> equals
 
If <math> \theta</math> is a constant such that <math> 0 < \theta < \pi</math> and <math> x + \dfrac{1}{x} = 2\cos{\theta}</math>, then for each positive integer <math> n</math>, <math> x^n + \dfrac{1}{x^n}</math> equals
  
<math> \textbf{(A)}\ 2\cos\theta\qquad \textbf{(B)}\ 2^n\cos\theta\qquad \textbf{(C)}\ 2\cos^n\theta\qquad \textbf{(D)}\ 2\cos n\theta\qquad \textbf{(E)}\ 2^n\cos^n\theta}</math>
+
<math> \textbf{(A)}\ 2\cos\theta\qquad \textbf{(B)}\ 2^n\cos\theta\qquad \textbf{(C)}\ 2\cos^n\theta\qquad \textbf{(D)}\ 2\cos n\theta\qquad \textbf{(E)}\ 2^n\cos^n\theta</math>
  
 
[[1981 AHSME Problems/Problem 24|Solution]]
 
[[1981 AHSME Problems/Problem 24|Solution]]
Line 342: Line 346:
 
[[1981 AHSME Problems/Problem 30|Solution]]
 
[[1981 AHSME Problems/Problem 30|Solution]]
  
==See Also==
+
== See also ==
*[[AHSME]]
 
  
*[[1981 AHSME]]
+
* [[AMC 12 Problems and Solutions]]
 +
* [[Mathematics competition resources]]
  
*[[1981 AHSME Answer Key]]
+
{{AHSME box|year=1981|before=[[1980 AHSME]]|after=[[1982 AHSME]]}} 
  
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 15:44, 16 September 2023

1981 AHSME (Answer Key)
Printable versions: WikiAoPS ResourcesPDF

Instructions

  1. This is a 30-question, multiple choice test. Each question is followed by answers marked A, B, C, D and E. Only one of these is correct.
  2. You will receive 5 points for each correct answer, 2 points for each problem left unanswered, and 0 points for each incorrect answer.
  3. No aids are permitted other than scratch paper, graph paper, ruler, compass, protractor and erasers.
  4. Figures are not necessarily drawn to scale.
  5. You will have 90 minutes working time to complete the test.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Problem 1

If $\sqrt{x+2}=2$, then $(x+2)^{2}$ equals

$\textbf{(A)}\ \sqrt{2}\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 4\qquad\textbf{(D)}\ 8\qquad\textbf{(E)}\ 16$

Solution

Problem 2

Point $E$ is on side $AB$ of square $ABCD$. If $EB$ has length one and $EC$ has length two, then the area of the square is

$\textbf{(A)}\ \sqrt{3}\qquad\textbf{(B)}\ \sqrt{5}\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 2\sqrt{3}\qquad\textbf{(E)}\ 5$

Solution

Problem 3

For $x\neq0$, $\dfrac{1}{x}+\dfrac{1}{2x}+\dfrac{1}{3x}$ equals

$\textbf{(A)}\ \dfrac{1}{2x}\qquad\textbf{(B)}\ \dfrac{1}{6}\qquad\textbf{(C)}\ \dfrac{5}{6x}\qquad\textbf{(D)}\ \dfrac{11}{6x}\qquad\textbf{(E)}\ \dfrac{1}{6x^3}$

Solution

Problem 4

If three times the larger of two numbers is four times the smaller and the difference between the numbers is 8, the the larger of two numbers is

$\textbf{(A)}\ 16\qquad\textbf{(B)}\ 24\qquad\textbf{(C)}\ 32\qquad\textbf{(D)}\ 44\qquad\textbf{(E)}\ 52$

Solution

Problem 5

In trapezoid $ABCD$, sides $AB$ and $CD$ are parallel, and diagonal $BD$ and side $AD$ have equal length. If $m\angle DCB=110^\circ$ and $m\angle CBD=30^\circ$, then $m\angle ADB=$

$\textbf{(A)}\ 80^\circ\qquad\textbf{(B)}\ 90^\circ\qquad\textbf{(C)}\ 100^\circ\qquad\textbf{(D)}\ 110^\circ\qquad\textbf{(E)}\ 120^\circ$

Solution

Problem 6

If $\dfrac{x}{x-1}=\dfrac{y^2+2y-1}{y^2+2y-2}$, then $x$ equals

$\textbf{(A)}\ y^2+2y-1\qquad\textbf{(B)}\ y^2+2y-2\qquad\textbf{(C)}\ y^2+2y+2 \qquad \\ \textbf{(D)}\ y^2+2y+1\qquad\textbf{(E)}\ -y^2-2y+1$

Solution

Problem 7

How many of the first one hundred positive integers are divisible by all of the numbers $2$, $3$, $4$, and $5$?

$\textbf{(A)}\ 0\qquad\textbf{(B)}\ 1\qquad\textbf{(C)}\ 2\qquad\textbf{(D)}\ 3\qquad\textbf{(E)}\ 4$

Solution

Problem 8

For all positive numbers $x$, $y$, $z$, the product $(x+y+z)^{-1}(x^{-1}+y^{-1}+z^{-1})(xy+yz+xz)^{-1}[(xy)^{-1}+(yz)^{-1}+(xz)^{-1}]$ equals $\textbf{(A)}\ x^{-2}y^{-2}z^{-2}\qquad\textbf{(B)}\ x^{-2}+y^{-2}+z^{-2}\qquad\textbf{(C)}\ (x+y+z)^{-1}\qquad \textbf{(D)}\ \dfrac{1}{xyz}\qquad \\ \textbf{(E)}\ \dfrac{1}{xy+yz+xz}$


Solution

Problem 9

In the adjoining figure, $PQ$ is a diagonal of the cube. If $PQ$ has length $a$, then the surface area of the cube is

[asy] import three; unitsize(1cm); size(200); currentprojection=orthographic(1/3,-1,1/2); draw((0,0,0)--(1,0,0)--(1,1,0)--(0,1,0)--cycle,black); draw((0,0,0)--(0,0,1),black); draw((0,1,0)--(0,1,1),black); draw((1,1,0)--(1,1,1),black); draw((1,0,0)--(1,0,1),black); draw((0,0,1)--(1,0,1)--(1,1,1)--(0,1,1)--cycle,black); draw((0,0,0)--(1,1,1),black); label("$P$",(0, 0, 0),NW); label("$Q$",(1, 1, 1),NE); [/asy]

$\textbf{(A)}\ 2a^2\qquad\textbf{(B)}\ 2\sqrt{2}a^2\qquad\textbf{(C)}\ 2\sqrt{3}a^2\qquad\textbf{(D)}\ 3\sqrt{3}a^2\qquad\textbf{(E)}\ 6a^2$

Solution

Problem 10

The lines $L$ and $K$ are symmetric to each other with respect to the line $y=x$. If the equation of the line $L$ is $y=ax+b$ with $a\neq 0$ and $b\neq 0$, then the equation of $K$ is $y=$

$\textbf{(A)}\ \dfrac{1}{a}x+b\qquad\textbf{(B)}\ -\dfrac{1}{a}x+b\qquad\textbf{(C)}\ \dfrac{1}{a}x-\dfrac{b}{a}\qquad\textbf{(D)}\ \dfrac{1}{a}x+\dfrac{b}{a}\qquad\textbf{(E)}\ \dfrac{1}{a}x-\dfrac{b}{a}$

Solution

Problem 11

The three sides of a right triangle have integral lengths which form an arithmetic progression. One of the sides could have length

$\textbf{(A)}\ 22\qquad\textbf{(B)}\ 58\qquad\textbf{(C)}\ 81\qquad\textbf{(D)}\ 91\qquad\textbf{(E)}\ 361$

Solution

Problem 12

If $p$, $q$, and $M$ are positive numbers and $q<100$, then the number obtained by increasing $M$ by $p\%$ and decreasing the result by $q\%$ exceeds $M$ if and only if

$\textbf{(A)}\ p>q \qquad\textbf{(B)}\ p>\dfrac{q}{100-q}\qquad\textbf{(C)}\ p>\dfrac{q}{1-q}\qquad \textbf{(D)}\ p>\dfrac{100q}{100+q}\qquad\textbf{(E)}\ p>\dfrac{100q}{100-q}$

Solution

Problem 13

Suppose that at the end of any year, a unit of money has lost $10\%$ of the value it had at the beginning of that year. Find the smallest integer $n$ such that after $n$ years, the money will have lost at least $90\%$ of its value (To the nearest thousandth $\log_{10} 3 = 0.477$).

$\textbf{(A)}\ 14\qquad\textbf{(B)}\ 16\qquad\textbf{(C)}\ 18\qquad\textbf{(D)}\ 20\qquad\textbf{(E)}\ 22$

Solution

Problem 14

In a geometric sequence of real numbers, the sum of the first $2$ terms is $7$, and the sum of the first $6$ terms is $91$. The sum of the first $4$ terms is

$\textbf{(A)}\ 28\qquad\textbf{(B)}\ 32\qquad\textbf{(C)}\ 35\qquad\textbf{(D)}\ 49\qquad\textbf{(E)}\ 84$

Solution

Problem 15

If $b>1$, $x>0$, and $(2x)^{\log_b 2}-(3x)^{\log_b 3}=0$, then $x$ is

$\textbf{(A)}\ \dfrac{1}{216}\qquad\textbf{(B)}\ \dfrac{1}{6}\qquad\textbf{(C)}\ 1\qquad\textbf{(D)}\ 6\qquad\textbf{(E)}\ \text{not uniquely determined}$

Solution

Problem 16

The base three representation of $x$ is \[12112211122211112222\] The first digit (on the left) of the base nine representation of $x$ is

$\textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 4\qquad\textbf{(E)}\ 5$

Solution

Problem 17

The function $f$ is not defined for $x=0$, but, for all non-zero real numbers $x$, $f(x)+2f\left(\dfrac{1}x\right)=3x$. The equation $f(x)=f(-x)$ is satisfied by

$\textbf{(A)}\ \text{exactly one real number} \qquad \textbf{(B)}\ \text{exactly two real numbers} \qquad\textbf{(C)}\ \text{no real numbers}\qquad \\ \textbf{(D)}\ \text{infinitely many, but not all, non-zero real numbers} \qquad\textbf{(E)}\ \text{all non-zero real numbers}$

Solution

Problem 18

The number of real solutions to the equation \[\dfrac{x}{100}=\sin x\] is

$\textbf{(A)}\ 61\qquad\textbf{(B)}\ 62\qquad\textbf{(C)}\ 63\qquad\textbf{(D)}\ 64\qquad\textbf{(E)}\ 65$

Solution

Problem 19

In $\triangle ABC$, $M$ is the midpoint of side $BC$, $AN$ bisects $\angle BAC$, and $BN\perp AN$. If sides $AB$ and $AC$ have lengths $14$ and $19$, respectively, then find $MN$.

[asy] size(150); defaultpen(linewidth(0.7)+fontsize(10)); pair B=origin, A=14*dir(42), C=intersectionpoint(B--(30,0), Circle(A,19)), M=midpoint(B--C), b=A+14*dir(A--C), N=foot(A, B, b); draw(N--B--A--N--M--C--A^^B--M); markscalefactor=0.1; draw(rightanglemark(B,N,A)); pair point=N; label("$A$", A, dir(point--A)); label("$B$", B, dir(point--B)); label("$C$", C, dir(point--C)); label("$M$", M, dir(point--M)); label("$N$", N, dir(30)); label(rotate(angle(dir(A--C)))*"$19$", A--C, dir(A--C)*dir(90)); label(rotate(angle(dir(A--B)))*"$14$", A--B, dir(A--B)*dir(90)); [/asy]

$\textbf{(A)}\ 2\qquad\textbf{(B)}\ \dfrac{5}{2}\qquad\textbf{(C)}\ \dfrac{5}{2}-\sin\theta\qquad\textbf{(D)}\ \dfrac{5}{2}-\dfrac{1}{2}\sin\theta\qquad\textbf{(E)}\ \dfrac{5}{2}-\dfrac{1}{2}\sin\left(\dfrac{1}{2}\theta\right)$

Solution

Problem 20

A ray of light originates from point $A$ and travels in a plane, being reflected $n$ times between lines $AD$ and $CD$ before striking a point $B$ (which may be on $AD$ or $CD$) perpendicularly and retracing its path back to $A$ (At each point of reflection the light makes two equal angles as indicated in the adjoining figure. The figure shows the light path for $n=3$). If $\measuredangle CDA=8^\circ$, what is the largest value $n$ can have?

[asy] unitsize(1.5cm); pair D=origin, A=(-6,0), C=6*dir(160), E=3.2*dir(160), F=(-2.1,0), G=1.5*dir(160), B=(-1.4095,0); draw((-6.5,0)--D--C,black); draw(A--E--F--G--B,black); dotfactor=4; dot("$A$",A,S); dot("$C$",C,N); dot("$R_1$",E,N); dot("$R_2$",F,S); dot("$R_3$",G,N); dot("$B$",B,S); markscalefactor=0.015; draw(rightanglemark(G,B,D)); draw(anglemark(C,E,A,12)); draw(anglemark(F,E,G,12)); draw(anglemark(E,F,A)); draw(anglemark(E,F,A,12)); draw(anglemark(B,F,G)); draw(anglemark(B,F,G,12)); draw(anglemark(E,G,F)); draw(anglemark(E,G,F,12)); draw(anglemark(E,G,F,16)); draw(anglemark(B,G,D)); draw(anglemark(B,G,D,12)); draw(anglemark(B,G,D,16)); label(D,"$D$",SE); [/asy]

$\textbf{(A)}\ 6\qquad\textbf{(B)}\ 10\qquad\textbf{(C)}\ 38\qquad\textbf{(D)}\ 98\qquad\textbf{(E)}\ \text{There is no largest value.}$

Solution

Problem 21

In a triangle with sides of lengths $a$, $b$, and $c$, $(a+b+c)(a+b-c) = 3ab$. The measure of the angle opposite the side length $c$ is

$\textbf{(A)}\ 15^\circ\qquad\textbf{(B)}\ 30^\circ\qquad\textbf{(C)}\ 45^\circ\qquad\textbf{(D)}\ 60^\circ\qquad\textbf{(E)}\ 150^\circ$

Solution

Problem 22

How many lines in a three dimensional rectangular coordinate system pass through four distinct points of the form $(i,j,k)$, where $i$, $j$, and $k$ are positive integers not exceeding four?

$\textbf{(A)}\ 60\qquad\textbf{(B)}\ 64\qquad\textbf{(C)}\ 72\qquad\textbf{(D)}\ 76\qquad\textbf{(E)}\ 100$

Solution

Problem 23

Equilateral $\triangle ABC$ is inscribed in a circle. A second circle is tangent internally to the circumcircle at $T$ and tangent to sides $AB$ and $AC$ at points $P$ and $Q$. If side $BC$ has length $12$, then segment $PQ$ has length

[asy] defaultpen(linewidth(.8pt)); pair B = origin; pair A = dir(60); pair C = dir(0); pair circ = circumcenter(A,B,C); pair P = intersectionpoint(circ--(circ + (-1,0)),A--B); pair Q = intersectionpoint(circ--(circ + (1,0)),A--C); label("$A$",A,N); label("$B$",B,SW); label("$C$",C,SE); label("$P$",P,NW); label("$Q$",Q,NE); label("$T$",(0.5,-0.3),S); draw(A--B--C--cycle); draw(circumcircle(A,B,C)); draw(P--Q); draw(Circle((0.5,0.09),0.385)); [/asy]

$\textbf{(A)}\ 6\qquad\textbf{(B)}\ 6\sqrt{3}\qquad\textbf{(C)}\ 8\qquad\textbf{(D)}\ 8\sqrt{3}\qquad\textbf{(E)}\ 9$

Solution

Problem 24

If $\theta$ is a constant such that $0 < \theta < \pi$ and $x + \dfrac{1}{x} = 2\cos{\theta}$, then for each positive integer $n$, $x^n + \dfrac{1}{x^n}$ equals

$\textbf{(A)}\ 2\cos\theta\qquad \textbf{(B)}\ 2^n\cos\theta\qquad \textbf{(C)}\ 2\cos^n\theta\qquad \textbf{(D)}\ 2\cos n\theta\qquad \textbf{(E)}\ 2^n\cos^n\theta$

Solution

Problem 25

In $\triangle ABC$ in the adjoining figure, $AD$ and $AE$ trisect $\angle BAC$. The lengths of $BD$, $DE$ and $EC$ are $2$, $3$, and $6$, respectively. The length of the shortest side of $\triangle ABC$ is

[asy] defaultpen(linewidth(.8pt)); pair A = (0,11); pair B = (2,0); pair D = (4,0); pair E = (7,0); pair C = (13,0); label("$A$",A,N); label("$B$",B,SW); label("$C$",C,SE); label("$D$",D,S); label("$E$",E,S); label("$2$",midpoint(B--D),N); label("$3$",midpoint(D--E),NW); label("$6$",midpoint(E--C),NW); draw(A--B--C--cycle); draw(A--D); draw(A--E); [/asy]

$\textbf{(A)}\ 2\sqrt{10}\qquad \textbf{(B)}\ 11\qquad \textbf{(C)}\ 6\sqrt{6}\qquad \textbf{(D)}\ 6\qquad \textbf{(E)}\ \text{not uniquely determined by the given information}$

Solution

Problem 26

Alice, Bob, and Carol repeatedly take turns tossing a die. Alice begins; Bob always follows Alice; Carol always follows Bob; and Alice always follows Carol. Find the probability that Carol will be the first one to toss a six. (The probability of obtaining a six on any toss is $\dfrac{1}{6}$, independent of the outcome of any other toss.)

$\textbf{(A)}\ \dfrac{1}{3}\qquad \textbf{(B)}\ \dfrac{2}{9}\qquad \textbf{(C)}\ \dfrac{5}{18}\qquad \textbf{(D)}\ \dfrac{25}{91}\qquad \textbf{(E)}\ \dfrac{36}{91}$

Solution

Problem 27

In the adjoining figure triangle $ABC$ is inscribed in a circle. Point $D$ lies on $\stackrel{\frown}{AC}$ with $\stackrel{\frown}{DC} = 30^\circ$, and point $G$ lies on $\stackrel{\frown}{BA}$ with $\stackrel{\frown}{BG}\, > \, \stackrel{\frown}{GA}$. Side $AB$ and side $AC$ each have length equal to the length of chord $DG$, and $\angle CAB = 30^\circ$. Chord $DG$ intersects sides $AC$ and $AB$ at $E$ and $F$, respectively. The ratio of the area of $\triangle AFE$ to the area of $\triangle ABC$ is

[asy] defaultpen(linewidth(.8pt)); pair C = origin; pair A = 2.5*dir(75); pair B = A + 2.5*dir(-75); path circ =circumcircle(A,B,C); pair D = waypoint(circ,(7/12)); pair G = waypoint(circ,(1/6)); pair E = intersectionpoint(D--G,A--C); pair F = intersectionpoint(A--B,D--G); label("$A$",A,N); label("$B$",B,SE); label("$C$",C,SW); label("$D$",D,SW); label("$G$",G,NE); label("$E$",E,NW); label("$F$",F,W); label("$30^\circ$",A,12S+E,fontsize(6pt)); draw(A--B--C--cycle); draw(circ); draw(Arc(A,0.25,-75,-105)); draw(D--G); [/asy]

$\textbf{(A)}\ \dfrac {2 - \sqrt {3}}{3}\qquad \textbf{(B)}\ \dfrac {2\sqrt {3} - 3}{3}\qquad \textbf{(C)}\ 7\sqrt {3}-12\qquad \textbf{(D)}\ 3\sqrt {3}-5\qquad\\ \textbf{(E)}\ \dfrac {9-5\sqrt {3}}{3}$

Solution

Problem 28

Consider the set of all equations $x^3 + a_2x^2 + a_1x + a_0 = 0$, where $a_2$, $a_1$, $a_0$ are real constants and $|a_i| < 2$ for $i = 0,1,2$. Let $r$ be the largest positive real number which satisfies at least one of these equations. Then

$\textbf{(A)}\ 1 < r < \dfrac{3}{2}\qquad \textbf{(B)}\ \dfrac{3}{2} < r < 2\qquad \textbf{(C)}\ 2 < r < \dfrac{5}{2}\qquad \textbf{(D)}\ \dfrac{5}{2} < r < 3\qquad \\ \textbf{(E)}\ 3 < r < \dfrac{7}{2}$

Solution

Problem 29

If $a > 1$, then the sum of the real solutions of

$\sqrt{a - \sqrt{a + x}} = x$

is equal to

$\textbf{(A)}\ \sqrt{a} - 1\qquad \textbf{(B)}\ \dfrac{\sqrt{a}- 1}{2}\qquad \textbf{(C)}\ \sqrt{a - 1}\qquad \textbf{(D)}\ \dfrac{\sqrt{a - 1}}{2}\qquad \textbf{(E)}\ \dfrac{\sqrt{4a- 3} - 1}{2}$

Solution

Problem 30

If $a$, $b$, $c$, and $d$ are the solutions of the equation $x^4 - bx - 3 = 0$, then an equation whose solutions are \[\dfrac {a + b + c}{d^2}, \dfrac {a + b + d}{c^2}, \dfrac {a + c + d}{b^2}, \dfrac {b + c + d}{a^2}\]is

$\textbf{(A)}\ 3x^4 + bx + 1 = 0\qquad \textbf{(B)}\ 3x^4 - bx + 1 = 0\qquad \textbf{(C)}\ 3x^4 + bx^3 - 1 = 0\qquad \\\textbf{(D)}\ 3x^4 - bx^3 - 1 = 0\qquad  \textbf{(E)}\ \text{none of these}$

Solution

See also

1981 AHSME (ProblemsAnswer KeyResources)
Preceded by
1980 AHSME
Followed by
1982 AHSME
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions


The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png