Difference between revisions of "1982 AHSME Problems/Problem 23"

Line 10: Line 10:
  
 
== Solution 1 ==
 
== Solution 1 ==
In <math>\triangle ABC,</math> let <math>a=n,b=n+1,c=n+2,</math> and <math>\angle A=\theta</math> for some positive integer <math>n.</math> We are given that <math>\angle C=2\theta,</math> and we wish to find <math>\cos\theta.</math>
+
In <math>\triangle ABC,</math> let <math>a=n,b=n+1,c=n+2,</math> and <math>\angle A=\theta</math> for some positive integer <math>n.</math> We are given that <math>\angle C=2\theta,</math> and we need <math>\cos\theta.</math>
  
 +
We apply the Law of Cosines to solve for <math>\cos\angle A:</math> <cmath>\cos\theta=\frac{b^2+c^2-a^2}{2bc}=\frac{n+5}{2(n+2)}.</cmath>
 +
We apply the Law of Cosines to solve for <math>\cos\angle C:</math> <cmath>\cos(2\theta)=\frac{a^2+b^2-c^2}{2ab}=\frac{n-3}{2n}.</cmath>
 +
By the Double-Angle Formula <math>\cos(2\theta)=2\cos^2\theta-1,</math> we have <cmath>2\left(\frac{n+5}{2(n+2)}\right)^2-1=\frac{n-3}{2n},</cmath> from which <math>n=-3,-\frac12,4.</math> Recall that <math>n</math> is a positive integer, so <math>n=4.</math> By substitution, the answer is <math>\boxed{\textbf{(A)}\ \frac{3}{4}}.</math>
  
 +
~MRENTHUSIASM
  
 
== Solution 2 ==
 
== Solution 2 ==

Revision as of 19:33, 14 September 2021

Problem

The lengths of the sides of a triangle are consecutive integers, and the largest angle is twice the smallest angle. The cosine of the smallest angle is

$\textbf{(A)}\ \frac{3}{4}\qquad \textbf{(B)}\ \frac{7}{10}\qquad \textbf{(C)}\ \frac{2}{3}\qquad \textbf{(D)}\ \frac{9}{14}\qquad \textbf{(E)}\ \text{none of these}$

Solution 1

In $\triangle ABC,$ let $a=n,b=n+1,c=n+2,$ and $\angle A=\theta$ for some positive integer $n.$ We are given that $\angle C=2\theta,$ and we need $\cos\theta.$

We apply the Law of Cosines to solve for $\cos\angle A:$ \[\cos\theta=\frac{b^2+c^2-a^2}{2bc}=\frac{n+5}{2(n+2)}.\] We apply the Law of Cosines to solve for $\cos\angle C:$ \[\cos(2\theta)=\frac{a^2+b^2-c^2}{2ab}=\frac{n-3}{2n}.\] By the Double-Angle Formula $\cos(2\theta)=2\cos^2\theta-1,$ we have \[2\left(\frac{n+5}{2(n+2)}\right)^2-1=\frac{n-3}{2n},\] from which $n=-3,-\frac12,4.$ Recall that $n$ is a positive integer, so $n=4.$ By substitution, the answer is $\boxed{\textbf{(A)}\ \frac{3}{4}}.$

~MRENTHUSIASM

Solution 2

See Also

1982 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png