Difference between revisions of "1982 USAMO Problems"
m (Made prettier) |
m (accurate wording) |
||
Line 2: | Line 2: | ||
==Problem 1== | ==Problem 1== | ||
− | + | In a party with <math>1982</math> persons, among any group of four there is at least one person who knows each of the other three. What is the minimum number of people in the party who know everyone else. | |
[[1982 USAMO Problems/Problem 1 | Solution]] | [[1982 USAMO Problems/Problem 1 | Solution]] |
Revision as of 11:31, 6 March 2013
Problems from the 1982 USAMO.
Problem 1
In a party with persons, among any group of four there is at least one person who knows each of the other three. What is the minimum number of people in the party who know everyone else.
Problem 2
Show that if are positive integers such that $\frac{\left(x^{m+n} + y^{m+n} + z^{m+n}\right)}{m+n}=\left(\frac{x^m + y^m + z^m}{m}\right) \left(\dfrac{x^n + y^n + z^n}{n}}\right)$ (Error compiling LaTeX. ! Extra }, or forgotten \right.) for all real with sum , then or .
Problem 3
is a point inside the equilateral triangle . is a point inside . Show that
Problem 4
Show that there is a positive integer such that, for every positive integer , is composite.
Problem 5
is the center of a sphere . Points are inside , is perpendicular to and , and there are two spheres through , and which touch . Show that the sum of their radii equals the radius of .
See Also
1982 USAMO (Problems • Resources) | ||
Preceded by 1981 USAMO |
Followed by 1983 USAMO | |
1 • 2 • 3 • 4 • 5 | ||
All USAMO Problems and Solutions |