1983 AHSME Problems/Problem 1

Revision as of 00:38, 20 February 2019 by Sevenoptimus (talk | contribs) (Fixed formatting)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

If $x \neq 0, \frac x{2} = y^2$ and $\frac{x}{4} = 4y$, then $x$ equals

$\textbf{(A)}\ 8\qquad \textbf{(B)}\ 16\qquad \textbf{(C)}\ 32\qquad \textbf{(D)}\ 64\qquad \textbf{(E)}\ 128$

Solution

From $\frac{x}{4} = 4y$, we get $x=16y$. Plugging in the other equation, $\frac{16y}{2} = y^2$, so $y^2-8y=0$. Factoring, we get $y(y-8)=0$, so the solutions are $0$ and $8$. Since $x \neq 0$, we also have $y \neq 0$, so $y=8$. Hence $x=16\cdot 8 = \boxed{\textbf{(E)}\ 128}$.

See Also

1983 AHSME (ProblemsAnswer KeyResources)
Preceded by
First Question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions


The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS