Difference between revisions of "1983 AHSME Problems/Problem 18"

(Created page with "...")
 
(Added the problem and solution)
Line 1: Line 1:
...
+
Problem:
 +
Let <math>f</math> be a polynomial function such that, for all real <math>x</math>,
 +
<cmath>f(x^2 + 1) = x^4 + 5x^2 + 3.</cmath>
 +
For all real <math>x</math>, <math>f(x^2 - 1)</math> is
 +
 
 +
Solution:
 +
(A) <math>x^4 + 5x^2 + 1</math> (B) <math>x^4 + x^2 - 3</math> (C) <math>x^4 - 5x^2 + 1</math> (D) <math>x^4 + x^2 + 3</math> (E) none of these
 +
Let <math>y = x^2 + 1</math>. Then <math>x^2 = y - 1</math>, so we can write the given equation as
 +
\begin{align*}
 +
f(y) &= x^4 + 5x^2 + 3 \\
 +
&= (x^2)^2 + 5x^2 + 3 \\
 +
&= (y - 1)^2 + 5(y - 1) + 3 \\
 +
&= y^2 - 2y + 1 + 5y - 5 + 3 \\
 +
&= y^2 + 3y - 1.
 +
\end{align*}
 +
Then substituting <math>x^2 - 1</math>, we get
 +
\begin{align*}
 +
f(x^2 - 1) &= (x^2 - 1)^2 + 3(x^2 - 1) - 1 \\
 +
&= x^4 - 2x^2 + 1 + 3x^2 - 3 - 1 \\
 +
&= \boxed{x^4 + x^2 - 3}.
 +
\end{align*}
 +
The answer is (B).

Revision as of 21:17, 26 September 2016

Problem: Let $f$ be a polynomial function such that, for all real $x$, \[f(x^2 + 1) = x^4 + 5x^2 + 3.\] For all real $x$, $f(x^2 - 1)$ is

Solution: (A) $x^4 + 5x^2 + 1$ (B) $x^4 + x^2 - 3$ (C) $x^4 - 5x^2 + 1$ (D) $x^4 + x^2 + 3$ (E) none of these Let $y = x^2 + 1$. Then $x^2 = y - 1$, so we can write the given equation as \begin{align*} f(y) &= x^4 + 5x^2 + 3 \\ &= (x^2)^2 + 5x^2 + 3 \\ &= (y - 1)^2 + 5(y - 1) + 3 \\ &= y^2 - 2y + 1 + 5y - 5 + 3 \\ &= y^2 + 3y - 1. \end{align*} Then substituting $x^2 - 1$, we get \begin{align*} f(x^2 - 1) &= (x^2 - 1)^2 + 3(x^2 - 1) - 1 \\ &= x^4 - 2x^2 + 1 + 3x^2 - 3 - 1 \\ &= \boxed{x^4 + x^2 - 3}. \end{align*} The answer is (B).