Difference between revisions of "1983 AIME Problems/Problem 1"

m (Fixed problem statement)
(Cleaned up the solutions)
Line 15: Line 15:
 
===Solution 2===
 
===Solution 2===
 
First we'll convert everything to exponential form.
 
First we'll convert everything to exponential form.
<math>x^{24}=w</math>, <math>y^{40}=w</math>, and <math>(xyz)^{12}=w</math>. The only expression with z is <math>(xyz)^{12}=w</math>. It now becomes clear one way to find <math>\log_z w</math> is to find what <math>x^{12}</math> and <math>y^{12}</math> are in terms of <math>w</math>.  
+
<math>x^{24}=w</math>, <math>y^{40}=w</math>, and <math>(xyz)^{12}=w</math>. The only expression containing <math>z</math> is <math>(xyz)^{12}=w</math>. It now becomes clear that one way to find <math>\log_z w</math> is to find what <math>x^{12}</math> and <math>y^{12}</math> are in terms of <math>w</math>.  
  
Taking the square root of the equation <math>x^{24}=w</math> results in <math>x^{12}=w^{1/2}</math>. Taking the <math>12/40</math> root of <math>y^{40}=w</math> equates to <math>y^{12}=w^{3/10}</math>.
+
Taking the square root of the equation <math>x^{24}=w</math> results in <math>x^{12}=w^{\frac{1}{2}}</math>. Taking the <math>\frac{12}{40}</math>th root of <math>y^{40}=w</math> gives <math>y^{12}=w^{\frac{3}{10}}</math>.
  
Going back to <math>(xyz)^{12}=w</math>, we can substitute the <math>x^{12}</math> and <math>y^{12}</math> with <math>w^{1/2}</math> and <math>w^{3/10}</math>, respectively. We now have <math>w^{1/2}</math>*<math>w^{3/10}</math>*<math>z^{12}=w</math>. Simplify we get <math>z^{60}=w</math>.
+
Going back to <math>(xyz)^{12}=w</math>, we can substitute the <math>x^{12}</math> and <math>y^{12}</math> with <math>w^{1/2}</math> and <math>w^{3/10}</math>, respectively. We now have <math>w^{1/2}w^{3/10}z^{12}=w</math>. Simplifying, we get <math>z^{60}=w</math>.
 
So our answer is <math>\boxed{060}</math>.
 
So our answer is <math>\boxed{060}</math>.
  

Revision as of 19:03, 15 February 2019

Problem

Let $x$, $y$ and $z$ all exceed $1$ and let $w$ be a positive number such that $\log_x w = 24$, $\log_y w = 40$ and $\log_{xyz} w = 12$. Find $\log_z w$.

Solutions

Solution 1

The logarithmic notation doesn't tell us much, so we'll first convert everything to the equivalent exponential forms.

$x^{24}=w$, $y^{40}=w$, and $(xyz)^{12}=w$. If we now convert everything to a power of $120$, it will be easy to isolate $z$ and $w$.

$x^{120}=w^5$, $y^{120}=w^3$, and $(xyz)^{120}=w^{10}$.

With some substitution, we get $w^5w^3z^{120}=w^{10}$ and $\log_zw=\boxed{060}$.

Solution 2

First we'll convert everything to exponential form. $x^{24}=w$, $y^{40}=w$, and $(xyz)^{12}=w$. The only expression containing $z$ is $(xyz)^{12}=w$. It now becomes clear that one way to find $\log_z w$ is to find what $x^{12}$ and $y^{12}$ are in terms of $w$.

Taking the square root of the equation $x^{24}=w$ results in $x^{12}=w^{\frac{1}{2}}$. Taking the $\frac{12}{40}$th root of $y^{40}=w$ gives $y^{12}=w^{\frac{3}{10}}$.

Going back to $(xyz)^{12}=w$, we can substitute the $x^{12}$ and $y^{12}$ with $w^{1/2}$ and $w^{3/10}$, respectively. We now have $w^{1/2}w^{3/10}z^{12}=w$. Simplifying, we get $z^{60}=w$. So our answer is $\boxed{060}$.

Solution 3

Applying the change of base formula, \begin{align*} \log_x w = 24 &\implies \frac{\log w}{\log x} = 24 \implies \frac{\log x}{\log w} = \frac 1 {24} \\ \log_y w = 40 &\implies \frac{\log w}{\log y} = 40 \implies \frac{\log y}{\log w} = \frac 1 {40} \\ \log_{xyz} w = 12 &\implies \frac{\log {w}}{\log {xyz}} = 12 \implies \frac{\log x +\log y + \log z}{\log w} = \frac 1 {12} \end{align*} Therefore, $\frac {\log z}{\log w} = \frac 1 {12} - \frac 1 {24} - \frac 1{40} = \frac 1 {60}$.

Hence, $\log_z w = \boxed{060}$.


Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.

See Also

1983 AIME (ProblemsAnswer KeyResources)
Preceded by
First Question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png