1983 AIME Problems/Problem 12

Revision as of 23:42, 11 March 2009 by Chenhsi (talk | contribs) (Solution)

Problem

The length of diameter $AB$ is a two digit integer. Reversing the digits gives the length of a perpendicular chord $CD$. The distance from their intersection point $H$ to the center $O$ is a positive rational number. Determine the length of $AB$.

[asy] pointpen=black; pathpen=black+linewidth(0.65); pair O=(0,0),A=(-65/2,0),B=(65/2,0); pair H=(-((65/2)^2-28^2)^.5,0),C=(H.x,28),D=(H.x,-28); D(CP(O,A));D(MP("A",A,W)--MP("B",B,E));D(MP("C",C,N)--MP("D",D)); dot(MP("H",H,SE));dot(MP("O",O,SE)); [/asy]

Solution

Let $AB=10x+y$ and $CD=10y+x$. It follows that $CO=\frac{AB}{2}=\frac{10x+y}{2}$ and $CH=\frac{CD}{2}=\frac{10y+x}{2}$. Applying the Pythagorean Theorem on $CO$ and $CH$, $OH=\sqrt{\left(\frac{10x+y}{2}\right)^2-\left(\frac{10y+x}{2}\right)^2}$ $=\sqrt{\frac{9}{4}\cdot 11(x+y)(x-y)}$ $=\frac{3}{2}\sqrt{11(x+y)(x-y)}$.

Because $OH$ is a positive rational number, the quantity $\sqrt{11(x+y)(x-y)}$ cannot contain any square roots. Either $x-y$ or $x+y$ must be 11. However, $x-y$ cannot be 11, because both must be digits. Therefore, $x+y$ must equal eleven and $x-y$ must be a perfect square (since $x+y>x-y$). The only pair $(x,y)$ that satisfies this condition is $(6,5)$, so our answer is $\boxed{065}$.

See also

1983 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions