1983 AIME Problems/Problem 14

Revision as of 20:13, 15 February 2019 by Sevenoptimus (talk | contribs) (Cleaned up the solutions)

Problem

In the adjoining figure, two circles with radii $8$ and $6$ are drawn with their centers $12$ units apart. At $P$, one of the points of intersection, a line is drawn in such a way that the chords $QP$ and $PR$ have equal length. Find the square of the length of $QP$.

[asy]size(160); defaultpen(linewidth(.8pt)+fontsize(11pt)); dotfactor=3; pair O1=(0,0), O2=(12,0); path C1=Circle(O1,8), C2=Circle(O2,6); pair P=intersectionpoints(C1,C2)[0]; path C3=Circle(P,sqrt(130)); pair Q=intersectionpoints(C3,C1)[0]; pair R=intersectionpoints(C3,C2)[1]; draw(C1); draw(C2); draw(O2--O1); dot(O1); dot(O2); draw(Q--R); label("$Q$",Q,NW); label("$P$",P,1.5*dir(80)); label("$R$",R,NE); label("12",waypoint(O1--O2,0.4),S);[/asy]

Solution

Note that some of these solutions assume that $R$ lies on the line connecting the centers, which is not true in general. It is true here only because the perpendicular from $P$ passes through through the point where the line between the centers intersects the small circle. This fact can be derived from the application of the Midpoint Theorem to the trapezoid made by dropping perpendiculars from the centers onto $QR$.

Solution 1

Firstly, notice that if we reflect $R$ over $P$, we get $Q$. Since we know that $R$ is on circle $B$ and $Q$ is on circle $A$, we can reflect circle $B$ over $P$ to get another circle (centered at a new point $C$, and with radius $6$) that intersects circle $A$ at $Q$. The rest is just finding lengths, as follows.

Since $P$ is the midpoint of segment $BC$, $AP$ is a median of $\triangle ABC$. Because we know $AB=12$, $BP=PC=6$, and $AP=8$, we can find the third side of the triangle using Stewart's Theorem or similar approaches. We get $AC = \sqrt{56}$. Now we have a kite $AQCP$ with $AQ=AP=8$, $CQ=CP=6$, and $AC=\sqrt{56}$, and all we need is the length of the other diagonal $PQ$. The easiest way it can be found is with the Pythagorean Theorem. Let $2x$ be the length of $PQ$. Then

$\sqrt{36-x^2} + \sqrt{64-x^2} = \sqrt{56}.$

Solving this equation, we find that $x^2=\frac{65}{2}$, so $PQ^2 = 4x^2 = \boxed{130}.$

Solution 2 (easiest)

[asy] size(0,5cm); pair a=(8,0),b=(20,0),m=(9.72456,5.31401),n=(20.58055,1.77134),p=(15.15255,3.54268),q=(4.29657,7.08535),r=(26,0); draw(b--r--n--b--a--m--n); draw(a--q--m); draw(circumcircle(origin,q,p)); draw(circumcircle((14,0),p,r)); draw(rightanglemark(a,m,n,24)); draw(rightanglemark(b,n,r,24)); label("$A$",a,S); label("$B$",b,S); label("$M$",m,NE); label("$N$",n,NE); label("$P$",p,N); label("$Q$",q,NW); label("$R$",r,E); label("$12$",(14,0),SW); label("$6$",(23,0),S); [/asy]

Draw additional lines as indicated. Note that since triangles $AQP$ and $BPR$ are isosceles, the altitudes are also bisectors, so let $QM=MP=PN=NR=x$.

Since $\frac{AR}{MR}=\frac{BR}{NR},$ triangles $BNR$ and $AMR$ are similar. If we let $y=BN$, we have $AM=3BN=3y$.

Applying the Pythagorean Theorem on triangle $BNR$, we have $x^2+y^2=36$. Similarly, for triangle $QMA$, we have $x^2+9y^2=64$.

Subtracting, $8y^2=28\Rightarrow y^2=\frac72\Rightarrow x^2=\frac{65}2\Rightarrow QP^2=4x^2=\boxed{130}$.

Solution 3

Let $QP=PR=x$. Angles $QPA$, $APB$, and $BPR$ must add up to $180^{\circ}$. By the Law of Cosines, $\angle APB=\cos^{-1}\left(\frac{{-11}}{24}\right)$. Also, angles $QPA$ and $BPR$ equal $\cos^{-1}\left(\frac{x}{16}\right)$ and $\cos^{-1}\left(\frac{x}{12}\right)$. So we have

$\cos^{-1}\left(\frac{x}{16}\right)+\cos^{-1}\left(\frac{{-11}}{24}\right)=180^{\circ}-\cos^{-1}\left(\frac{x}{12}\right).$

Taking the cosine of both sides, and simplifying using the addition formula for $\cos$ as well as the identity $\sin^{2}{x} + \cos^{2}{x} = 1$, gives $x^2=\boxed{130}$.

Solution 4 (quickest)

Let $QP = PR = x$. Extend the line containing the centers of the two circles to meet $R$ and the other side of the large circle.

The part of this line from $R$ and to the point nearest to $R$ where it intersects the larger circle has length $6+(12-8)=10$. The length of the diameter of the larger circle is $16$.

Thus by Power of a Point, $x \cdot 2x = 10 \cdot (10+16) = 260$, so $x^2 = \boxed{130}$.

See Also

1983 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions