Difference between revisions of "1983 AIME Problems/Problem 4"

(Cleaned up the solutions)
m (fixed spacing, moved toc)
Line 1: Line 1:
== Problem ==
+
==Problem==
 
A machine-shop cutting tool has the shape of a notched circle, as shown. The radius of the circle is <math>\sqrt{50}</math> cm, the length of <math>AB</math> is <math>6</math> cm and that of <math>BC</math> is <math>2</math> cm. The angle <math>ABC</math> is a right angle. Find the square of the distance (in centimeters) from <math>B</math> to the center of the circle.
 
A machine-shop cutting tool has the shape of a notched circle, as shown. The radius of the circle is <math>\sqrt{50}</math> cm, the length of <math>AB</math> is <math>6</math> cm and that of <math>BC</math> is <math>2</math> cm. The angle <math>ABC</math> is a right angle. Find the square of the distance (in centimeters) from <math>B</math> to the center of the circle.
  
 
[[File:pdfresizer.com-pdf-convert-aimeq4.png]]
 
[[File:pdfresizer.com-pdf-convert-aimeq4.png]]
  
__TOC__
+
==Solution==
 
+
===Solution 1===
== Solution ==
 
=== Solution 1 ===
 
 
Because we are given a right angle, we look for ways to apply the [[Pythagorean Theorem]].  Let the foot of the [[perpendicular]] from <math>O</math> to <math>AB</math> be <math>D</math> and let the foot of the perpendicular from <math>O</math> to the [[line]] <math>BC</math> be <math>E</math>. Let <math>OE=x</math> and <math>OD=y</math>. We're trying to find <math>x^2+y^2</math>.
 
Because we are given a right angle, we look for ways to apply the [[Pythagorean Theorem]].  Let the foot of the [[perpendicular]] from <math>O</math> to <math>AB</math> be <math>D</math> and let the foot of the perpendicular from <math>O</math> to the [[line]] <math>BC</math> be <math>E</math>. Let <math>OE=x</math> and <math>OD=y</math>. We're trying to find <math>x^2+y^2</math>.
  
Line 33: Line 31:
 
Thus, <math>\left(\sqrt{50}\right)^2 = y^2 + (6-x)^2</math>, and <math>\left(\sqrt{50}\right)^2 = x^2 + (y+2)^2</math>. We solve this system to get <math>x = 1</math> and <math>y = 5</math>, such that the answer is <math>1^2 + 5^2 = \boxed{026}</math>.
 
Thus, <math>\left(\sqrt{50}\right)^2 = y^2 + (6-x)^2</math>, and <math>\left(\sqrt{50}\right)^2 = x^2 + (y+2)^2</math>. We solve this system to get <math>x = 1</math> and <math>y = 5</math>, such that the answer is <math>1^2 + 5^2 = \boxed{026}</math>.
  
=== Solution 2 ===
+
===Solution 2===
 
Drop perpendiculars from <math>O</math> to <math>AB</math> (with foot <math>T_1</math>), <math>M</math> to <math>OT_1</math> (with foot <math>T_2</math>), and <math>M</math> to <math>AB</math> (with foot <math>T_3</math>).
 
Drop perpendiculars from <math>O</math> to <math>AB</math> (with foot <math>T_1</math>), <math>M</math> to <math>OT_1</math> (with foot <math>T_2</math>), and <math>M</math> to <math>AB</math> (with foot <math>T_3</math>).
 
Also, mark the midpoint <math>M</math> of <math>AC</math>.
 
Also, mark the midpoint <math>M</math> of <math>AC</math>.
Line 64: Line 62:
 
Then, notice that <math>\angle MOT_2 = \angle T_3MO = \angle BAC</math>. Therefore, the two blue triangles are congruent, from which we deduce <math>MT_2 = 2</math> and <math>OT_2 = 6</math>. As <math>T_3B = 3</math> and <math>MT_3 = 1</math>, we subtract and get <math>OT_1 = 5,T_1B = 1</math>. Then the Pythagorean Theorem tells us that <math>OB^2 = \boxed{026}</math>.
 
Then, notice that <math>\angle MOT_2 = \angle T_3MO = \angle BAC</math>. Therefore, the two blue triangles are congruent, from which we deduce <math>MT_2 = 2</math> and <math>OT_2 = 6</math>. As <math>T_3B = 3</math> and <math>MT_3 = 1</math>, we subtract and get <math>OT_1 = 5,T_1B = 1</math>. Then the Pythagorean Theorem tells us that <math>OB^2 = \boxed{026}</math>.
  
=== Solution 3 ===
+
===Solution 3===
 
Draw segment <math>OB</math> with length <math>x</math>, and draw radius <math>OQ</math> such that <math>OQ</math> bisects chord <math>AC</math> at point <math>M</math>. This also means that <math>OQ</math> is perpendicular to <math>AC</math>. By the Pythagorean Theorem, we get that <math>AC=\sqrt{(BC)^2+(AB)^2}=2\sqrt{10}</math>, and therefore <math>AM=\sqrt{10}</math>. Also by the Pythagorean theorem, we can find that <math>OM=\sqrt{50-10}=2\sqrt{10}</math>.
 
Draw segment <math>OB</math> with length <math>x</math>, and draw radius <math>OQ</math> such that <math>OQ</math> bisects chord <math>AC</math> at point <math>M</math>. This also means that <math>OQ</math> is perpendicular to <math>AC</math>. By the Pythagorean Theorem, we get that <math>AC=\sqrt{(BC)^2+(AB)^2}=2\sqrt{10}</math>, and therefore <math>AM=\sqrt{10}</math>. Also by the Pythagorean theorem, we can find that <math>OM=\sqrt{50-10}=2\sqrt{10}</math>.
  

Revision as of 23:39, 16 March 2020

Problem

A machine-shop cutting tool has the shape of a notched circle, as shown. The radius of the circle is $\sqrt{50}$ cm, the length of $AB$ is $6$ cm and that of $BC$ is $2$ cm. The angle $ABC$ is a right angle. Find the square of the distance (in centimeters) from $B$ to the center of the circle.

Pdfresizer.com-pdf-convert-aimeq4.png

Solution

Solution 1

Because we are given a right angle, we look for ways to apply the Pythagorean Theorem. Let the foot of the perpendicular from $O$ to $AB$ be $D$ and let the foot of the perpendicular from $O$ to the line $BC$ be $E$. Let $OE=x$ and $OD=y$. We're trying to find $x^2+y^2$.

[asy] size(150); defaultpen(linewidth(0.6)+fontsize(11)); real r=10; pair O=(0,0),A=r*dir(45),B=(A.x,A.y-r),C; pair D=(A.x,0),F=(0,B.y); path P=circle(O,r); C=intersectionpoint(B--(B.x+r,B.y),P); draw(P); draw(C--B--O--A--B); draw(D--O--F--B,dashed); dot(O); dot(A); dot(B); dot(C); label("$O$",O,SW); label("$A$",A,NE); label("$B$",B,S); label("$C$",C,SE); label("$D$",D,NE); label("$E$",F,SW); [/asy]

Applying the Pythagorean Theorem, $OA^2 = OD^2 + AD^2$ and $OC^2 = EC^2 + EO^2$.

Thus, $\left(\sqrt{50}\right)^2 = y^2 + (6-x)^2$, and $\left(\sqrt{50}\right)^2 = x^2 + (y+2)^2$. We solve this system to get $x = 1$ and $y = 5$, such that the answer is $1^2 + 5^2 = \boxed{026}$.

Solution 2

Drop perpendiculars from $O$ to $AB$ (with foot $T_1$), $M$ to $OT_1$ (with foot $T_2$), and $M$ to $AB$ (with foot $T_3$). Also, mark the midpoint $M$ of $AC$.

Then the problem is trivialized. Why?

[asy] size(200); pair dl(string name, pair loc, pair offset) {  dot(loc);  label(name,loc,offset);  return loc; }; pair a[] = {(0,0),(0,5),(1,5),(1,7),(-2,6),(-5,5),(-2,5),(-2,6),(0,6)}; string n[] = {"O","$T_1$","B","C","M","A","$T_3$","M","$T_2$"}; for(int i=0;i<a.length;++i) {  dl(n[i],a[i],dir(degrees(a[i],false) ) );  draw(a[(i-1)%a.length]--a[i]); }; dot(a); draw(a[5]--a[1]); draw(a[0]--a[3]); draw(a[0]--a[4]); draw(a[0]--a[2]); draw(a[0]--a[5]);  draw(a[5]--a[2]--a[3]--cycle,blue+linewidth(0.7)); draw(a[0]--a[8]--a[7]--cycle,blue+linewidth(0.7)); [/asy]

First notice that by computation, $OAC$ is a $\sqrt {50} - \sqrt {40} - \sqrt {50}$ isosceles triangle, so $AC = MO$. Then, notice that $\angle MOT_2 = \angle T_3MO = \angle BAC$. Therefore, the two blue triangles are congruent, from which we deduce $MT_2 = 2$ and $OT_2 = 6$. As $T_3B = 3$ and $MT_3 = 1$, we subtract and get $OT_1 = 5,T_1B = 1$. Then the Pythagorean Theorem tells us that $OB^2 = \boxed{026}$.

Solution 3

Draw segment $OB$ with length $x$, and draw radius $OQ$ such that $OQ$ bisects chord $AC$ at point $M$. This also means that $OQ$ is perpendicular to $AC$. By the Pythagorean Theorem, we get that $AC=\sqrt{(BC)^2+(AB)^2}=2\sqrt{10}$, and therefore $AM=\sqrt{10}$. Also by the Pythagorean theorem, we can find that $OM=\sqrt{50-10}=2\sqrt{10}$.

Next, find $\angle BAC=\arctan{\left(\frac{2}{6}\right)}$ and $\angle OAM=\arctan{\left(\frac{2\sqrt{10}}{\sqrt{10}}\right)}$. Since $\angle OAB=\angle OAM-\angle BAC$, we get \[\angle OAB=\arctan{2}-\arctan{\frac{1}{3}}\]\[\tan{(\angle OAB)}=\tan{(\arctan{2}-\arctan{\frac{1}{3}})}\]By the subtraction formula for $\tan$, we get\[\tan{(\angle OAB)}=\frac{2-\frac{1}{3}}{1+2\cdot \frac{1}{3}}\]\[\tan{(\angle OAB)}=1\]\[\cos{(\angle OAB)}=\frac{1}{\sqrt{2}}\]Finally, by the Law of Cosines on $\triangle OAB$, we get \[x^2=50+36-2(6)\sqrt{50}\frac{1}{\sqrt{2}}\]\[x^2=\boxed{026}.\]

See Also

1983 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions