Difference between revisions of "1983 AIME Problems/Problem 9"

 
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
 +
Find the minimum value of <math>\frac{9x^2\sin^2 x + 4}{x\sin x}</math> for <math>0 < x < \pi</math>.
  
 
== Solution ==
 
== Solution ==
 +
Let <math>y=x\sin{x}</math>.
 +
 +
We can rewrite the expression as <math>\frac{9y^2+4}{y}=9y+\frac{4}{y}</math>.
 +
 +
Since <math>x>0</math> and <math>\sin{x}>0</math> because <math>0< x<\pi</math>, we have <math>y>0</math>.
 +
 +
So we can apply [[AM-GM]]:
 +
 +
<math>9y+\frac{4}{y}\ge 2\sqrt{9y\cdot\frac{4}{y}}=12</math>
 +
 +
The equality holds when <math>9y=\frac{4}{y}\Longleftrightarrow y^2=\frac49\Longleftrightarrow y=\frac23</math>
 +
 +
Therefore, the minimum value is <math>12</math> (when <math>x\sin{x}=\frac23</math>).
 +
 +
----
 +
 +
* [[1983 AIME Problems/Problem 8|Previous Problem]]
 +
* [[1983 AIME Problems/Problem 10|Next Problem]]
 +
* [[1983 AIME Problems|Back to Exam]]
  
 
== See also ==
 
== See also ==
* [[1983 AIME Problems]]
+
* [[AIME Problems and Solutions]]
 +
* [[American Invitational Mathematics Examination]]
 +
* [[Mathematics competition resources]]
 +
 
 +
[[Category:Intermediate Algebra Problems]]
 +
[[Category:Intermediate Trigonometry Problems]]

Revision as of 00:11, 24 July 2006

Problem

Find the minimum value of $\frac{9x^2\sin^2 x + 4}{x\sin x}$ for $0 < x < \pi$.

Solution

Let $y=x\sin{x}$.

We can rewrite the expression as $\frac{9y^2+4}{y}=9y+\frac{4}{y}$.

Since $x>0$ and $\sin{x}>0$ because $0< x<\pi$, we have $y>0$.

So we can apply AM-GM:

$9y+\frac{4}{y}\ge 2\sqrt{9y\cdot\frac{4}{y}}=12$

The equality holds when $9y=\frac{4}{y}\Longleftrightarrow y^2=\frac49\Longleftrightarrow y=\frac23$

Therefore, the minimum value is $12$ (when $x\sin{x}=\frac23$).


See also