Difference between revisions of "1984 AHSME Problems/Problem 26"

(Solution)
Line 4: Line 4:
 
<math> \mathrm{(A) \ }9 \qquad \mathrm{(B) \ }12 \qquad \mathrm{(C) \ } 15 \qquad \mathrm{(D) \ }18 \qquad \mathrm{(E) \ } \text{Not uniquely determined} </math>
 
<math> \mathrm{(A) \ }9 \qquad \mathrm{(B) \ }12 \qquad \mathrm{(C) \ } 15 \qquad \mathrm{(D) \ }18 \qquad \mathrm{(E) \ } \text{Not uniquely determined} </math>
  
==Solution==
+
==Solution 1==
 
[[File:1984AHSME26.png]]
 
[[File:1984AHSME26.png]]
  
Line 15: Line 15:
 
Now note that <math>CE</math> is the height of triangle <math>BDE</math> originating from vertex <math>E</math>, so we have that
 
Now note that <math>CE</math> is the height of triangle <math>BDE</math> originating from vertex <math>E</math>, so we have that
  
<cmath>[BED]=\frac{BD\cdot CE}{2}=\frac{ac\cos{\beta}\tan{\beta}}{4}=\frac{ac\sin{\beta}}{4}</cmath>
+
<math>[BED]=\frac{BD\cdot CE}{2}=\frac{ac\cos{\beta}\tan{\beta}}{4}=\frac{ac\sin{\beta}}{4}</math>
  
However, this is simply half the area of triangle <math>ABC</math>, so <math>[BED]=12</math>, which makes <math>\mathrm{(B) \ }</math> the correct answer.
+
However, this is simply half the area of triangle <math>ABC</math>, so <math>[BED]=12</math>, which makes <math>\boxed{\textbf{B}}</math> the correct answer.
 +
 
 +
==Solution 2==
 +
It is well known that <math>[CMB]=12</math>. But <math>\triangle{CBE}</math>~<math>\triangle{DBM}</math>. As a result <math>[CMB]=[BED] \implies \boxed{\textbf{B}}</math>.
  
 
==See Also==
 
==See Also==
 
{{AHSME box|year=1984|num-b=25|num-a=27}}
 
{{AHSME box|year=1984|num-b=25|num-a=27}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 20:37, 12 February 2017

Problem

In the obtuse triangle $ABC$ with $\angle C>90^\circ$, $AM=MB$, $MD\perp BC$, and $EC\perp BC$ ($D$ is on $BC$, $E$ is on $AB$, and $M$ is on $EB$). If the area of $\triangle ABC$ is $24$, then the area of $\triangle BED$ is

$\mathrm{(A) \ }9 \qquad \mathrm{(B) \ }12 \qquad \mathrm{(C) \ } 15 \qquad \mathrm{(D) \ }18 \qquad \mathrm{(E) \ } \text{Not uniquely determined}$

Solution 1

1984AHSME26.png

We let side $BC$ have length $a$, $AB$ have length $c$, and $\angle ABC$ have angle measure $\beta$. We then have that

\[[ABC]=24=\frac{AB\cdot BC\sin{\angle ABC}}{2}=\frac{ac\sin{\beta}}{2}\]

Now I shall find the lengths of $BD$ and $CE$ in terms of the defined variables. Note that $M$ is defined to be the midpoint of $AB$, so $BM=\frac{c}{2}$. We can then use trigonometric manipulation on triangle $BDM$ to get that $BD=\frac{c\cos{\beta}}{2}$. We can also use trig manipulation on $BCE$ to get that $CE=a\tan{\beta}$.

Now note that $CE$ is the height of triangle $BDE$ originating from vertex $E$, so we have that

$[BED]=\frac{BD\cdot CE}{2}=\frac{ac\cos{\beta}\tan{\beta}}{4}=\frac{ac\sin{\beta}}{4}$

However, this is simply half the area of triangle $ABC$, so $[BED]=12$, which makes $\boxed{\textbf{B}}$ the correct answer.

Solution 2

It is well known that $[CMB]=12$. But $\triangle{CBE}$~$\triangle{DBM}$. As a result $[CMB]=[BED] \implies \boxed{\textbf{B}}$.

See Also

1984 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 25
Followed by
Problem 27
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png